Main Article Content

María Fernanda Guevara Granja
Lenin Ramírez-Cando


The water hyacinth (Eichhornia crassipes) is a perennial aquatic plant, it has been used as an ornamental species for ponds. Native from Brazil, it has high reproductive and adaptive capacities. These factors have allowed E. crassipes to be among the 10 most invasive plants in the world propagating in more fifty countries on five continents, causing adverse effects on the native flora and fauna. It forms dense floating colonies that decrease the water flow in reservoirs, reducing the amount of light and dissolved oxygen concentration. Several methods have been applied to control this weed and other introduced aquatic plants. The main one is, is the herbicides application. However, different methods have greater public acceptance (e.g. manual removal, grinding and use of biological controls including weevils (Neochetina spp) and herbivorous carp (Ctenopharyngodon idella)). Moreover, their characteristics, mentioned as negative (high adaptive capacity, growth in contaminated environments, etc.), are being deeply studied as tools in ex situ phytoremediation, principally as a tool for effective cleaning of effluents contaminated with heavy metals, pesticides and dyes discharged by various industries, opening new applications for this macrophyte.
Abstract 1821 | PDF (Español (España)) Downloads 2075


Agami, M. & Reddy K. R. 1990. Competition for space between Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. cultured in nutrient-enriched water. Aquatic Botany, 38: 195-208.

Anudechakul, C., Vangnai, A. S., & Ariyakanon, N. 2015. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium. International Journal of Phytoremediation, 17(7), 678–685.

Arteaga Carrera, J. Cuéllar, W., Ramírez, D., Ríos, S. & Giraldo, S. 2010. Manejo de plantas acuáticas invasoras en embalses de EPM. Caso: buchón de agua (Eichhornia crassipes) en el embalse Porce II, Antioquia-Colombia. Revista EMP 3:22-35.

Barret S.C.H.& Forno I.W., 1982, Style morph distribution in new word population of Eichhornia crassipes (Mart.) Solms-Laubach (Water Hyacinth). Aquatic Botany 13, 299-306.SE BORRÓ LA PALABRA Elsevier

Chigbo, F. E., Smith, R. W., & Shore, F. L. 1982. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes. Environmental Pollution Series A, Ecological and Biological, 27(1), 31–36. http://doi.org/10.1016/0143-1471(82)90060-5

Den Breeÿen, A. & Charudattan, R. 2009. Management of Invasive Weeds. Chapter 10: Biological Control of Invasive Weeds in Forests and Natural Areas by Using Microbial Agents. Inderjit (ed). USA.

Epstein, P, 1998 Weeds bring disease to the East African waterways. Lancet 351:577.

Fleming, J.P & Dibble E.D. 2015. Ecological mechanisms of invasion success in aquatic Macrophytes. Hydrobiologia. 746:23–37

Greco, M. & Freitas, J. 2000. On two methods to estimate production of Eichhornia crassipes in the eutrophic pampulha reservoir (mg, Brazil). Universidade Federal de Minas Gerais.

Greenfield B. K., Geoffrey S.S, Andrews J.C., Rajan N, Andrews, S.P. Jr. &. Spencer D.F. 2007. Mechanical Shredding of Water Hyacinth (Eichhornia crassipes): Effects on Water Quality in the Sacramento-San Joaquin River Delta, California. Estuaries and Coasts, 30: 627–640.

Gopalakrishnan A., Rajkumar M., Sun J., Parida A. & Venmathi Maran B.A. 2011. Integrated biological control of water hyacinths, Eichhornia crassipes by a novel combination of grass carp, Ctenopharyngodon idella (Valenciennes, 1844), and the weevil, Neochetina spp. Chinese Journal of Oceanology and Limnology, 29: 162-166. Duplicado Ya está eliminada la referencia que estaba duplicada.

Hidalgo, J. C., Montano, J. J., & Sandoval, M. 2005. Recientes aplicaciones de la depuración de aguas residuales con plantas acuáticas. Theoria, 14(1), 17–25. Retrieved from http://www.ubiobio.cl/theoria/v/v14/a2.pdf

Javier, E., Salamanca, P., Madera-, C. A., Avila-williams, C. A., Lucia, A. & Ríos, D. A. 2015. Phytoremediation. (A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman, Eds.) (Vol. 2). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-10969-5

Khanna, S. 2010. Development and use of remote sensing tools to study the impact of water hyacinth (Eichhornia crassipes) invasion in an estuarine ecosystem. Ecology. University of California.

Khanna, S., Santos, M., Hestir, E. & Ustin, S. 2012. Plant community dynamics relative to the changing distribution of a highly invasive species, Eichhornia crassipes: a remote sensing perspective. Biological Invasions 14:717–733.

Labrada, R., Caseley, J.C., & Parker, C., (eds.). 1996. Manejo de malezas para países en desarrollo. Organización de las Naciones Unidas para la Agricultura - FAO. pp 137.

Li, X., Zhou, Y., Yang, Y., Yang, S., Sun, X., & Yang, Y. 2015. Physiological and Proteomics Analyses Reveal the Mechanism of Eichhornia crassipes Tolerance to High-Concentration Cadmium Stress Compared with Pistia stratiotes. Plos One, 10(4), e0124304. http://doi.org/10.1371/journal.pone.0124304

Lung’ayua, H.B.O, M’harzi, A., Tackx, M., Gichuki, J., & Symoens, J.J. 2000. Phytoplankton community structure and environment in the Kenyan waters of Lake Victoria. Freshwater Biol. 43, 529-543.

Maine, M. A., Suñe, N., & Duarte, M. 1999. Eliminación de cadmio y cromo desde aguas utilizando macrófitos. Información Tecnológica, 10(6): 11-18.

Milne, J., Murphy, K. & Thomaz, S. 2006. Morphological variation in Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) Solms in relation to aquatic vegetation type and the environment in the floodplain of the Rio Paraná, Brazil. Macrophytes in Aquatic Ecosystems: From Biology to Management Developments in Hydrobiology 190: 19-25. YA SE ENCUENTRA EN EL TEXTO

Odada, E., Olago, D.O., Ochola, W., Ntiba, M., Wandiga, S., Gichuki, N. & Oyieke, H. (Ed.) 2006. Proceedings of the 11th World Lakes Conference: vol. 2,. p. 573-579.

Paris, C., H. Hadad & M. Maine. 2000. Selección de macrófitas para la absorción de plomo. Actas IV Encuentro Nacional de Jóvenes Investigadores, U. N. L., Santa Fe, Argentina: 45-46.

Poveda A & Velasteguí R. 2013. evaluación de especies acuáticas flotantes para la fitorremediación de aguas residuales industrial y de uso agrícola previamente caracterizadas en el cantón Ambato, provincia de Tungurahua. Universidad Técnica de Ambato. Facultad de Ciencia E Ingeniería En Alimentos, Carrera de Ingeniería Bioquímica.

Schnack, J. A., De Francesco, F. O., Colado, U. R., Novoa, M. L., & Schnack, E. J. 2000. Humedales antrópicos: Su contribución para la concervación de la biodiversidad en los dominios subtropical y pampásico de la Argentina. Ecologia Austral, 10(1), 63–80.

Seema, P. 2012. Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews in Environmental Science and Biotechnology 11:249–259.

Toft, J.D., Simenstad, C.A. & Cordell, J.R. 2003. The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 26:746–758.

Vera-Herrera, F. & Rojas-Galaviz, J. 1980. Control biológico del lirio acuático eichhornia crassipes mediante la carpa herbívora Ctenopharyngodon idella (pisces: cyprinidae) en estanques controlados. Universidad Nacional Autónoma de México.

Vitória, A. P., Santos, J. L. D. S., Salomão, M. S. M. B., Vieira, T. D. O., Cunha, M. Da, Pireda, S. F., & Rabelo, G. R. 2015. Influence of ecologic type, seasonality, and origin of macrophyte in metal accumulation, anatomy and ecophysiology of Eichhornia crassipes and Eichhornia azurea. Aquatic Botany, 125, 9–16.