Germination Ecophysiology for Three Peri-urban Ephemeral Weeds from Morelia, Michoacan, Mexico

Main Article Content

Nayeli Martinez
Erick de la Barrera


The environmental requirements leading to germination were determined by three common species found during the June-October 2009 rainy season in a peri-urban site from Morelia, Michoacan, Mexico, where the construction of a campus of the Universidad Nacional Autonoma de Mexico (UNAM) was underway. In particular, we evaluated responses in the laboratory to low-temperature stratification, day/night air temperature, and water potential for the native Onagraceae Lopezia racemosa and Ludwigia octovalvis, and the exotic Polygonaceae Rumex crispus. Low-temperature stratification had no effect on germination by L. racemosa, for which maximum germination averaging 88% was optimal at 25/15 and 30/20 ºC. Germination at 21 d was halved at –0.5 MPa and completely inhibited at –1.0 MPa. The seeds of L. octovalvis were also insensitive to low temperature stratification and their germination never exceeded 70%, with the two highest temperatures of 30/20 and 35/25 ºC being the optimum. For this species germination was maximal at 0.0 MPa, decreasing significantly under every treatment with a minimum germination of 21% for seeds incubated at –0.1 MPa. Germination for the exotic R. crispus was delayed by low-temperature stratification, although all its seeds germinated regardless of the temperature or water potential treatment. While the environmental requirements for germination of ephemeral species often match the typical climate of their growing season, the differential responses found for the species considered in the present study provide some insight into the mechanisms leading to changes in species composition for communities from disturbed environments, including the displacement of native species and the proliferation of exotic, potentially invasive plants.
Abstract 490 | PDF (Español (España)) Downloads 184 PDF Downloads 158 EPUB (Español (España)) Downloads 9 HTML (Español (España)) Downloads 24 XML (Español (España)) Downloads 0


Baskin, C.C. and Baskin, J.M. 1988. Germination ecophysiology of herbaceous plant species in a temperate region. Am. J. Bot., 75: 286-305

Baskin, C.C. and Baskin, J.M. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd. Ed. Elsevier, U.S.A.

Calderón, R.G. and Rzedowski, J. 2004. Manual de Malezas de la Región de Salvatierra, Guanajuato. Flora del Bajío y de Regiones Adyacentes. Fascículo complementario XX. Instituto de Ecología, A.C., Mexico

Chachalis, D. and Reddy, K.N. 2000. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci., 48: 212-216

Chaideftou, E., Kallimanis, A.S., Bergmeier, E., and Dimopolous, P. 2012. How does plant species composition change from year to year? A case study from the herbaceous layer of a submediterranean oak woodland. Comm. Ecol. 13: 88-96

Challenger, A. and Dirzo, R. 2009. Factores de cambio y estado de la biodiversidad. In: Capital Natural de México. Vol. II: Estado de Conservación y Tendencias de Cambio. pp. 37-73. J. Sarukhán (ed.) Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico

Chi, B.J. 2006. Efecto de tratamientos pregerminativos en la germinación de semillas de Lopezia racemosa Cav. B.S. Thesis. Universidad Autónoma Chapingo, Mexico.

Cousens, R. and Mortimer, M. 2009. Dynamics of weed populations. 1st. Ed. Cambridge University Press, U.K.

Dahlquist, R.M., Prather, T.S., and Stapleton, J.J. 2007. Time and temperature requirements for weed seed thermal death. Weed Sci. 55: 619-625

de la Barrera, E. and Andrade, J.L. 2005. Challenges to plant megadiversity: How environmental physiology can help. New Phytol. 167: 5-8

de la Barrera, E. and Nobel, P.S. 2003. Physiological ecology of seed germination for the columnar cactus Stenocereus queretaroensis. J. Arid Environ., 53: 297-306

de la Barrera, E, Pimienta-Barrios, E. and Schondube, J.E. 2009. Reproductive ecophysiology. In: Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel. pp. 301-335. E. de la Barrera and W.K. Smith (eds.). Universidad Nacional Autónoma de México, Mexico.

del-Val, E., Balvanera, P., Castellarini, F., Espinosa-García, F.J., Murguía, M., and Pacheco, C. 2015. Identifying areas of high invasion risk: a general model and an application to Mexico. Rev. Mex. Biodiv., 86: 208-216

Debeaujon, I., Léon-Kloosterziel, K.M., and Koornneef, M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol., 122: 403-414

Dekker, J. 2016. Evolutionary Ecology of Weeds. 2nd Ed. CreateSpace Independent Publishing Platform, USA

Donohue, K., Rubio De Casas, R., Burhardt, L., Kovach, K, and Willis, C.G. 2010. Germination, postgermination adaptation, and species ecological ranges. Ann. Rev. Evol. Systematics. 41: 293-319.

Dübbern de Souza, F.H. and Marcos-Filho, J. 2001. The seed coat as a modulator of seed-environment relationships in Fabaceae. Braz. J. Bot., 24: 365-375

Fani, F.Y.S., Rezvani, M., Rashed, M.M.H., and Ghanizadeh, H. 2013. Factors affecting seed germination and seedling emergence of sheep sorrel (Rumex acetosella). Rom. Agric. Res., 30: 373-380

Fenner, M. and Thompson, K. 2005. The Ecology of Seeds. Cambridge University Press, U.K.

Finch-Savage, W. and Leubner-Metzger, G. 2006. Seed dormancy and the control of germination. New Phytol., 171: 501-523.

Gorgone-Barbosa, E., Pivello, V.R., Baeza, M.J., and Fidelis, A. 2016. Disturbance as a factor in breaking dormancy and enhancing invasiveness of African grasses in a Neotropical Savanna. Acta Bot. Bras., 30: 131-137

Grime, J.P. 2006. Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd Ed. Wiley, U.S.A.

Larcher, W. 2001. Physiological Plant Ecology: Ecophysiology and stress physiology of functional groups. 4th Ed. Springer, U.S.A.

Michel, B.E. and Radcliffe, D. 1985. A computer program relating solute potential to solution composition for five solutes. Agron. J., 87: 126-130

Nobel, P.S. 2009. Physicochemical and Environmental Plant Physiology. 4th Ed. Academic Press, U.S.A.

Rockström J., Steffen, W., Noone, K., Persson, Å., Chapin III, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., et al. 2009. A safe operating spece for humanity. Nature, 461: 472-475

Rowarth, J.S., Hampton, J.G., and Hill, M.J. 2007. New Zealand native seed germination requirements: A review. N. Z. J. Bot., 45: 485-501

Sala, O.E., Chapin III, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huennke, L.F., Jackson, R.B., Kinzig, A., et al. 2000. Global biodiversity scenarios for the year 2100. Science, 287: 1770-1774

Totterdell, S. and Roberts, E.H. 1979. Effects of low temperatures on the loss of innate dormancy and the development of induced dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant Cell Environ., 2: 131-137

Vibrans, H. and Tenorio-Lezama, P. 2012. Malezas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Viewed: 4 September 2012. Available online at:

Young, D.R. and Nobel, P.S. 1986. Predictions of soil-water potentials in the North-Western Sonoran Desert. J. Ecol., 74: 143-154