Meta-analysis of the effect of glutamine dietary inclusion on productive performance in piglets

Main Article Content

Jimmy Quisirumbay-Gaibor


Glutamine is not considered an essential amino acid, however it plays an important role in the health and growth of neonates and adults. In piglets the weaning generates atrophy of the intestinal villi and growth retardation. Several studies have shown that glutamine supplementation (0.2-2%) decreases the adverse effects of post-weaning stress in piglets. The objective of this manuscript was to evaluate the effect size of glutamine supplementation on the productive performance of piglets, the consistency of their effect and the influence of other factors through the use of meta-analysis. The administration of glutamine improves the feed conversion (p <0.001), the piglets that receive glutamine convert the feed better when the supplementation lasted between 7 to 14 days (p = 0.0023), since they require 121.6 g less of feed in comparison with the control group to make 1 kg of body weight. When the supplementation is done for a period of 15 to 30 days and 7 to 30 days, the saving of feed is 70.6 g (p <0.001) and 87.3 g (p <0.001) per kg of body weight respectively. The daily weight gain is higher in 20.3 g/day (p = 0.0029) compared to the control group between 7 to 30 days of supplementation and 28.2 g/day (p = 0.0002) between 15 to 30 days. Age and weight of the piglet at the beginning of the supplementation, level of lysine, crude protein and the number of repetitions per treatment influence the effect of glutamine on the variables evaluated.
Abstract 508 | PDF (Español (España)) Downloads 223 PDF Downloads 182 EPUB (Español (España)) Downloads 5 HTML (Español (España)) Downloads 44 XML (Español (España)) Downloads 0


Aaron, D. K. y Hays, V. W. (2004) How many pigs? Statistical power considerations in swine nutrition experiments. Journal of animal science, 82(13_suppl), E245-E254. DOI: Disponible en:

Abdulkarimi, R., Shahir, M. H. & Daneshyar, M. (2019). Effects of dietary glutamine and arginine supplementation on performance, intestinal mor­phology and ascites mortality in broiler chickens reared under cold environment. Asian-Australa­sian Journal of Animal Sciences, 32(1), 110-117. DOI: 10.5713/ajas.17.0150 Disponible en:

Andretta, I., Kipper, M., Lehnen, C. R., Demori, A. B., Remus, A. y Lovatto, P. A. (2012). Meta-analysis of the relationship between ractopamine and dietary lysine levels on carcass characteristics in pigs. Livestock Science, 143(1), 91-96. DOI: Disponible en:

Apple, J. K., Rincker, P. J., McKeith, F. K., Carr, S. N., Armstrong, T. A. y Matzat, P. D. (2007). Meta-analysis of the ractopamine response in finishing swine. The Professional Animal Scientist, 23(3), 179-196. DOI: Disponible en:

Bartell, S. M. & Batal, A. B. (2007). The effect of supplemental glutamine on growth performan­ce, development of the gastrointestinal tract, and humoral immune response of broilers. Poultry Science, 86(9), 1940-1947. DOI: Disponible en:

Bax, L 2016, MIX 2.0 - Professional software for meta-analysis in Excel. Version 2.0. BiostatXL. Disponible en:

Borenstein, M, Hedges, LV, Higgins, JP & Rothstein, HR 2011, Introduction to meta-analysis, John Wiley & Sons, Chichester. Disponible en:

Boza, J. J., Moënnoz, D., Bournot, C. E., Blum, S., Zbinden, I., Finot, P. A., & Ballèvre, O. (2000) Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells. European journal of nutrition, 39(1), 38-46. Disponible en:

Campbell, J. M., Crenshaw, J. D. & Polo, J. (2013) The biological stress of early weaned piglets. Journal of animal science and biotechnology, 4(1), 19. DOI: Disponible en:

Chamorro, S., De Blas, C., Grant, G., Badiola, I., Menoyo, D., & Carabaño, R. (2010) Effect of dietary supplementation with glutamine and a combination of glutamine-arginine on intestinal health in twenty-five-day-old weaned rabbits. Journal of animal science, 88(1), 170-180. DOI: Disponible en:

Cochran, W. G. (1954) The combination of estimates from different experiments. Biometrics, 10(1), 101-129. DOI: 10.2307/3001666 Disponible en:

Cromwell, G. L. (2002) Why and how antibiotics are used in swine production. Animal biotechnology, 13(1), 7-27. DOI: Disponible en:

Curi, R., Newsholme, P., Procopio, J., Lagranha, C., Gorjão, R., & Pithon-Curi, T. C. (2007) Glutamine, gene expression, and cell function. Front Biosci, 12(1), 344-357. Disponible en:

de Abreu, M. L. T. D. U., Donzele, J. L. U., Saraiva, A. U., Oliveira, R. F. M. D. U., Fortes, E. I., & Graña, G. L. (2010) Glutamina, nucleotídeos e plasma suíno em rações para leitões desmamados. R. Bras. Zootec, 39(3), 520-525. Disponible en:

Domeneghini, C., Di Giancamillo, A., Savoini, G., Paratte, R., Bontempo, V., & Dell Orto, V. (2004) Structural patterns of swine ileal mucosa following L-glutamine and nucleotide administration during the weaning period. An histochemical and histometrical study. Histology and Histopathology, 19(1), 49-58. Disponible en:

Duttlinger, A. W., Kpodo, K. R., Lay, D. C., Richert, B. T., & Johnson, J. S. (2019) Replacing dietary antibiotics with 0.20% L-glutamine in swine nursery diets: Impact on health and productivity of pigs following weaning and transport. Journal of Animal Science. DOI: Disponible en:

Gloaguen, M., Le Floc'h, N., Corrent, E., Primot, Y. & Van Milgen, J. (2014). The use of free amino acids allows formulating very low crude protein diets for piglets. Journal of animal science, 92(2), 637-644. DOI: Disponible en:

Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. (2017) Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends in microbiology, 25(10), 851-873. DOI: Disponible en:

Haynes, T. E., Li, P., Li, X., Shimotori, K., Sato, H., Flynn, N. E., & Wu, G. (2009) L-Glutamine or L-alanyl-L-glutamine prevents oxidant-or endotoxin-induced death of neonatal enterocytes. Amino acids, 37(1), 131-142. Disponible en:

He, J., Feng, G. D., Ao, X., Li, Y. F., Qian, H. X., Liu, J. B., & He, Z. Z. (2016) Effects of L-glutamine on growth performance, antioxidant ability, immunity and expression of genes related to intestinal health in weanling pigs. Livestock Science, 189, 102-109. DOI: Disponible en:

Higgins, J. P. & Thompson, S. G. (2002) Quantifying heterogeneity in a meta‐analysis. Statistics in medicine, 21(11), 1539-1558. DOI: Disponible en:

Horio, Y., Osawa, S., Takagaki, K., Hishida, A., Furuta, T., & Ikuma, M. (2008) Glutamine supplementation increases Th1-cytokine responses in murine intestinal intraepithelial lymphocytes. Cytokine, 44(1), 92-95. DOI: Disponible en:

Hsu, C. B., Huang, H. J., Wang, C. H., Yen, H. T., & Yu, B. (2010) The effect of glutamine supplement on small intestinal morphology and xylose absorptive ability of weaned piglets. African Journal of Biotechnology, 9(41), 7003-7008. Disponible en:

Hung, Y. T., Hanson, A. R., Shurson, G. C. y Urriola, P. E. (2017). Peroxidized lipids reduce growth performance of poultry and swine: a meta-analysis. Animal Feed Science and Technology, 231, 47-58. DOI: Disponible en:

Jazideh, F., Farhoomand, P., Daneshyar, M. & Najafi, G. (2014) The effects of dietary glutamine supplementation on growth performance and intestinal morphology of broiler chickens reared under hot conditions. Turkish Journal of Veterinary and Animal Sciences, 38(3), 264-270. Disponible en:

Jiang, Z. Y., Sun, L. H., Lin, Y. C., Ma, X. Y., Zheng, C. T., Zhou, G. L., & Zou, S. T. (2009) Effects of dietary glycyl-glutamine on growth performance, small intestinal integrity, and immune responses of weaning piglets challenged with lipopolysaccharide. Journal of Animal Science, 87(12), 4050-4056. DOI: Disponible en:

Johnson, I. R., Ball, R. O., Baracos, V. E. & Field, C. J. (2006). Glutamine supplementation influences immune development in the newly weaned piglet. Developmental & Comparative Immunology, 30(12), 1191-1202. DOI: Disponible en:

Johnson, J. S. & Lay Jr, D. C. (2017) Evaluating the behavior, growth performance, immune parameters, and intestinal morphology of weaned piglets after simulated transport and heat stress when antibiotics are eliminated from the diet or replaced with L-glutamine. Journal of animal science, 95(1), 91-102. DOI: Disponible en:

Kiefer, C. y Sanches, J. F. (2009). Metanálise dos níveis de ractopamina em dietas para suínos em terminação. Revista Brasileira de Zootecnia, 38(6), 1037-1044. Disponible en:

Lalles, J. P., Bosi, P., Smidt, H. & Stokes, C. R. (2007) Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society, 66(2), 260-268. DOI: Disponible en:

Lee, D. N., Cheng, Y. H., Wu, F. Y., Sato, H., Shinzato, I., Chen, S. P., & Yen, H. T. (2003) Effect of dietary glutamine supplement on performance and intestinal morphology of weaned pigs. Asian-australasian journal of animal sciences, 16(12), 1770-1776. DOI: Disponible en:

Le Floc’h, N., Wessels, A., Corrent, E., Wu, G. & Bosi, P. (2018). The relevance of functional amino acids to support the health of growing pigs. Animal Feed Science and Technology, 245, 104-116. DOI: Disponible en:

Létourneau-Montminy, M. P., Jondreville, C., Sauvant, D. y Narcy, A. (2012). Meta-analysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase. Animal, 6(10), 1590-1600. DOI: Disponible en:

Luquetti, B. C., Alarcon, M. F. F., Lunedo, R., Campos, D. M. B., Furlan, R. L., & Macari, M. (2016) Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. Scientia Agricola, 73(4), 322-327. DOI: Disponible en:

Maiorka, A., Silva, A. V. F., Santin, E., Dahlke, F., Bruno, L. D. G., Boleli, I. C., & Trautenmuller, H. (2016) Effect of broiler breeder age and glutamine supplementation on the development of the intestinal mucosa of 7-day-old chicks. Revista Brasileira de Ciência Avícola, 18(1), 17-22. DOI: Disponible en:

Manvailer, G. V., Kiefer, C., de Souza, K. M. R., Marçal, D. A., Paiva, L. L., Rodrigues, G. P., & Ozelame, A. M. (2015) Glutamine for broilers reared in hot environment. Archivos de Zootecnia, 64(248), 377-382. Disponible en:

Metzler-Zebeli, B. U., Trevisi, P., Prates, J. A., Tanghe, S., Bosi, P., Canibe, N. y Zebeli, Q. (2017). Assessing the effect of dietary inulin supplementation on gastrointestinal fermentation, digestibility and growth in pigs: A meta-analysis. Animal Feed Science and Technology, 233, 120-132. DOI: Disponible en:

Moeser, A. J., Pohl, C. S. & Rajput, M. (2017) Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313-321. DOI: Disponible en:

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M. & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4(1), 1-8. DOI: 10.1186/2046-4053-4-1. Disponible en:

Muro, E. M., Pelícia, V. C., Vercese, F., de Souza, I. M. G. P., Pimenta, G. E. M., Oliveira, R. S. D. S. G., & Sartori, J. R. (2015) Aditivos fitogênicos e glutamina mais ácido glutâmico na dieta de frangos desafiados com coccidiose. Agrarian, 8(29), 304-311. Disponible en:

Namroud, N. F., Shivazad, M., Zaghari, M., Madadgar, O., & Nourijelyani, K. (2017) Impact of dietary glutamine on amino acid digestibility values and intestinal morphometric parameters in neonate chicks. South African Journal of Animal Science, 47(4), 440-453. DOI: Disponible en:

Nascimento, G. M., Leandro, N. S. M., Café, M. B., Stringhini, J. H., Andrade, M. A., Martinez, K. L. D. A., & Mascarenhas, A. G. (2014) Performance and intestinal characteristics of broiler chicken fed diet with glutamine in the diet without anticoccidials agents. Revista Brasileira de Saúde e Produção Animal, 15(3), 637-648. DOI: Disponible en:

Nassiri Moghaddam, H. & Alizadeh-Ghamsari, A. H. (2013) Improved performance and small intestinal development of broiler chickens by dietary L-glutamine supplementation. Journal of applied animal research, 41(1), 1-7. DOI: Disponible en:

Olubodun, J. O., Zulkifli, I., Farjam, A. S., Hair-Bejo, M., & Kasim, A. (2015) Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition. Italian Journal of Animal Science, 14(1), 3263. DOI: Disponible en:

Peng, X., Yan, H., You, Z., Wang, P., & Wang, S. (2004) Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients. Burns, 30(2), 135-139. DOI: Disponible en:

Peng, Y., Yu, K., Mu, C., Hang, S., Che, L. & Zhu, W. (2017). Progressive response of large intestinal bacterial community and fermentation to the stepwise decrease of dietary crude protein level in growing pigs. Applied microbiology and biotechnology, 101(13), 5415-5426. DOI: Disponible en:

Pluske, J. R., Turpin, D. L. & Kim, J. C. (2018) Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187-196. DOI: Disponible en:

Remus, A., Peres, F. M., Hauschild, L., Andretta, I., Kipper, M., de Paula, G. J. y Pomar, C. (2015). Exploratory study on the utilization of different dietary methionine sources and methionine to lysine ratio for growing–finishing pigs. Livestock Science, 181, 96-102. DOI: Disponible en:

Rhoads, J. M. & Wu, G. (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino acids, 37(1), 111-122. Disponible en:

Ribeiro Jr, V., Albino, L. F. T., Rostagno, H. S., Hannas, M. I., Ribeiro, C. L. N., Vieira, R. A., & da Silva, D. L. (2015) Effects of Dietary L-Glutamine or L-Glutamine Plus L-Glutamic Acid Supplementation Programs on the Performance and Breast Meat Yield Uniformity of 42-d-Old Broilers. Brazilian Journal of Poultry Science, 17(SPE), 93-98. DOI: Disponible en:

Sakiyama, T., Musch, M. W., Ropeleski, M. J., Tsubouchi, H., & Chang, E. B. (2009) Glutamine increases autophagy under basal and stressed conditions in intestinal epithelial cells. Gastroenterology, 136(3), 924-932. DOI: Disponible en:

Sales, J. (2011). A meta-analysis of the effects of dietary betaine supplementation on finishing performance and carcass characteristics of pigs. Animal feed science and technology, 165(1-2), 68-78. DOI: Disponible en:

Sauvant, D., Schmidely, P., Daudin, J. J. & St-Pierre, N. R. (2008) Meta-analyses of experimental data in animal nutrition. Animal, 2(8), 1203-1214. DOI: Disponible en:

Shan, Y., Shan, A., Li, J. & Zhou, C. (2012) Dietary supplementation of arginine and glutamine enhances the growth and intestinal mucosa development of weaned piglets. Livestock Science, 150(1-3), 369-373. DOI: Disponible en:

Smith, M. G., Jordan, D., Chapman, T. A., Chin, J. C., Barton, M. D., Do, T. N., & Trott, D. J. (2010) Antimicrobial resistance and virulence gene profiles in multi-drug resistant enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea. Veterinary microbiology, 145(3-4), 299-307. DOI: Disponible en:

Solà-Oriol, D. & Gasa, J. (2017) Feeding strategies in pig production: Sows and their piglets. Animal feed Science and technology, 233, 34-52. DOI: Disponible en:

Spreeuwenberg, M. A. M., Verdonk, J. M. A. J., Gaskins, H. R. & Verstegen, M. W. A. (2001). Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. The Journal of nutrition, 131(5), 1520-1527. DOI: Disponible en:

Torres-Pitarch, A., Hermans, D., Manzanilla, E. G., Bindelle, J., Everaert, N., Beckers, Y. y Lawlor, P. G. (2017). Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Animal Feed Science and Technology, 233, 145-159. DOI: Disponible en:

Torres-Pitarch, A., Manzanilla, E. G., Gardiner, G. E., O’Doherty, J. V. y Lawlor, P. G. (2019). Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source. Animal Feed Science and Technology, 251, 153-165. DOI: Disponible en:

Varley, MA & Wiseman, J 2001, The weaner pig: nutrition and management, CABI, New York. Disponible en:

Wang, B., Wu, G., Zhou, Z., Dai, Z., Sun, Y., Ji, Y., & Wu, Z. (2015) Glutamine and intestinal barrier function. Amino acids, 47(10), 2143-2154. Disponible en:

Wang, H., Zhang, C., Wu, G., Sun, Y., Wang, B., He, B., Wu, Z. (2014) Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. The Journal of nutrition, 145(1), 25-31.DOI: Disponible en:

Watford, M. (2015) Glutamine and glutamate: Nonessential or essential amino acids?. Animal Nutrition, 1(3), 119-122. DOI: Disponible en:

Wijtten, P. J., van der Meulen, J. & Verstegen, M. W. (2011) Intestinal barrier function and absorption in pigs after weaning: a review. British Journal of Nutrition, 105(7), 967-981. DOI: Disponible en:

Wu, G. (2014). Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. Journal of Animal Science and Biotechnology, 5(1), 34. DOI: Disponible en:

Wu, G., Bazer, F. W., Johnson, G. A., Knabe, D. A., Burghardt, R. C., Spencer, T. E., & Wang, J. J. 2011. Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production. Journal of Animal Science, 89(7), pp. 2017-2030. DOI: Disponible en:

Wu, G., Meier, S. A. & Knabe, D. A. (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. The Journal of nutrition, 126(10), 2578-2584. DOI: Disponible en:

Xiao, Y. P., Wu, T. X., Sun, J. M., Yang, L., Hong, Q. H., Chen, A. G., & Yang, C. M. (2012) Response to dietary L-glutamine supplementation in weaned piglets: a serum metabolomic comparison and hepatic metabolic regulation analysis. Journal of animal science, 90(12), 4421-4430. DOI: Disponible en:

Xi, P., Jiang, Z., Zheng, C., Lin, Y., & Wu, G. (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci, 16(1), 578-597. Disponible en:

Zeng, Z. K., Shurson, G. C. y Urriola, P. E. (2017). Prediction of the concentration of standardized ileal digestible amino acids and safety margins among sources of distillers dried grains with solubles for growing pigs: A meta-analysis approach. Animal feed science and technology, 231, 150-159. DOI: Disponible en:

Zhong, X., Li, W., Huang, X., Wang, Y., Zhang, L., Zhou, Y., & Wang, T. (2012) Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Archives of animal nutrition, 66(5), 347-356. DOI: Disponible en:

Zhong, X., Zhang, X. H., Li, X. M., Zhou, Y. M., Li, W., Huang, X. X., & Wang, T. (2011) Intestinal growth and morphology is associated with the increase in heat shock protein 70 expression in weaning piglets through supplementation with glutamine. Journal of animal science, 89(11), 3634-3642. DOI: Disponible en:

Zhou, R. Y., Peng, J., Liu, Z. L. & Fang, Z. F. (2006) Effects of biocom as a replacement of glutamine on performance and blood biochemical indexes of early weaned piglets. Asian-australasian journal of animal sciences, 19(6), 872-876. DOI: Disponible en:

Zou, X. T., Zheng, G. H., Fang, X. J. & Jiang, J. F. (2006) Effects of glutamine on growth performance of weanling piglets. Czech Journal of Animal Science, 51(10), 444-448. Disponible en: