Comparison of effects exerted by bio-fertilizers, NPK fertilizers, and cultivation methods on soil respiration in Chernozem soil

Main Article Content

Bence Mátyás https://orcid.org/0000-0003-2694-1848
Daniel A. Lowy https://orcid.org/0000-0003-2210-6757
Ankit Singla http://orcid.org/0000-0002-0400-2885
Jesus R. Melendez http://orcid.org/0000-0001-8936-5513
Sándor Zsolt http://orcid.org/0000-0002-6969-5192

Abstract

Soil respiration is a significant indicator of soil microbial activity; global soil respiration and decomposition processes release yearly to the atmosphere a total of 220 billion tons of carbon dioxide. Therefore, studies on the whole- or one particular aspect of soil carbon cycle aiming at optimizing agricultural carbon dioxide emissions or improving carbon sequestration contribute to a sustainable agriculture practice. In this paper we present the effects of biofertilizer application (Bacillus megaterium, Bacillus circulans, and Pseudomonas putida) on soil respiration in chernozem soil. Experiments were performed at Látókép Experimental Station, belonging to the University of Debrecen, Hungary. Additionally, we compare our results with findings of prior studies related to commercial NPK fertilizer applications (in four doses: N60P45K45; N120P90K90; N180 P135K135;  and N240P180K180),  and two different cultivation methods (ploughed, loosened, RTK in rows, and RTK between rows); these investigations were conducted at the same experimental station. Our results indicate lower tendency for soil respiration, when biofertilizers are applied as compared to commercialNPK fertilizers, which enables to decrease CO2 emission in the environment.We also discuss a unit change indifferent alkali absorption-based methods (Oxitop and Witkamp) to facilitate comparability of recently acquired data with results of previous long-term fertilization experiments.
Abstract 381 | PDF (Español (España)) Downloads 103 PDF Downloads 154 HTML (Español (España)) Downloads 20 EPUB (Español (España)) Downloads 2 XML (Español (España)) Downloads 0

References

Álvaro-Fuentes, J. and Cantero-Martínez, C. 2010. "Potential to mitigate anthropogenic CO. emissions by tillage reduction in dryland soils of Spain." Spanish J. Agricultural Research 8(4): 1271-1276.

Ashok J., Falbo L., Das S., Dewangan N., Visconti CG., Kawi S. 2019. "Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products. In: Aresta M., Karimi I., Kawi S. (eds)" An Economy Based on Carbon Dioxide and Water. Springer, Cham.

Baldock, JA, Wheeler, I., Mckenzue, N., McBrateny, A. 2012. "Soils and climate change: Potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture." Crop Pasture Sci. 63, 269–283.

Bautista, G., Mátyás, B., Carpio, I. et al. 2017. "Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity." F1000Research 6:1950 (https://doi.org/10.12688/f1000research.12936.2)

Bunk, B., Schulz, A., Stammen, S., MünchH, R., Warren, M., Rohde, M., Jahn, M. and Biedendieck, R. (2010). "A short story about a big magic bug." Bioengineered Bugs 1: 85–91.

Buzás, I. 1988. "Manual of Soil and Agrochemical Analysis." INDA 4231 Kiadó. Budapest, 1988: 1.

Brebbia, C. A., & Bjornlund, H. (Eds.). (2014). Sustainable Irrigation and Drainage V: Management, Technologies and Policies (Vol. 185). WIT Press.

Chen, J. et al. 2020. "Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest". Soil Biology and Biochemistry. Pergamon, 142, p. 107708. doi: 10.1016/j.soilbio.2020.107708.

DeVos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K-H. and Whitman, W. 2009. "Bergey's Manual of Systematic Bacteriology" Vol. 3: The Firmicutes. Springer-Verlag, New York.

DenMan, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Hollanf, D. Jacon, U. Lohmann, S Ramachandran, P.L. DA Silva Dias, S.C. Wofsy, X. Zhang. 2007 "Couplings Between Changes in the Climate System and Biogeochemistry." In: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Elmqvist, T., Andersson, E., Frantzeskaki, N. "Sustainability and resilience for transformation in the urban century." Nat Sustain 2019 2, 267–273 10.1038/ s41893-019-0250-1

Espinosa-Urgel, M., Salido, A., Ramos, J. 2000. “Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds”. J. Bacteriology 182(9): 2363-9. DOI: 10.1128/jb.182.9.2363-2369.2000

El-Yazeid, A., Abou-Aly, H., Mady, M., MOUSSA, S. 2007. "Enhancing growth, productivity and quality of squash plants using phosphate dissolving microorganisms (bio phosphor) combined with boron foliar spray." Research J. Agricultural Biological Science 3(4): 274-286.

Fekete, I., Kotroczó, Zs., Varga, Cs., Nagy, P.T., Várbíró, G., Bowden, R.D., Tóth, J.A., Lajtha, K. 2014. "Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in Central-European deciduous forest." Soil Biology and Biochemistry 74: 106-114.

Fekete, I., Kotroczó, Zs., Varga, Cs., Veres, Zs., Tóth, J.A. 2011. "The effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest." Acta Silv. Lign. Hung. 7: 87-96.

Francis, C. A.; Porter, P. 2011. "Ecology in Sustainable Agriculture Practices and Systems." Critical Reviews in Plant Sciences 30(1-2): 64-73. DOI: 10.1080/07352689.2011.554353

Glatzel, S., Basiliko, N., & Moore, T. 2004. "Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, Eastern Quebec, Canada." Wetlands 24: 261-267. doi: 10.1672/0277-5212(2004)024[0261:cdampp]2.0.CO;2

Gordon, R., Haynes, W., Pang, C. 2015. "Bacterial Endospores. Bacterial Endospores." Cornell University, March 6, 2015. Web. 10 Dec. 2015. In: The genus Bacillus. U.S. Department of Agriculture Agricultural Handbook no. 427. U.S. Department of Agriculture, Washington, D.C., 1973.

Inubushi, K., Sakamoto, K., Sawamoto, T. 2005. "Properties of microbial biomass in acid soils and their turnover." Soil Sci. Plant Nutr 51: 605–608.

IPCC: Climate Change. 2014. "Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change" [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland.

Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., & Ali, I. M. 2010. “Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China.” Agriculture, Ecosystems & Environment. 137(3-4), 294–307. doi:10.1016/j.agee.2010.02.015

Jakab, A. 2020. "The ammonium lactate soluble potassium and phosphorus content of the soils of north-east Hungary region: a quantifying study." DRC Sustainable Future 1(1): 7-13. DOI: 10.37281/DRCSF/1.1.2

Johnson, J., Franzluebbers, A., Weyers, S., Reicosky, D. 2007. "Agricultural opportunities to mitigate greenhouse gas emissions." Environ Pollut 150(1): 107-124.

Kong, Y., Nagano, H., Katai, J., Vago, I., Olah, A. Z., Yashima, M., Inubushi, K. 2013. "CO., N.O and CH. production/consumption potentials of soils under different land-use types in central Japan and eastern Hungary." Soil Science Plant Nutrition 59: 455-462. doi: 10.1080/00380768.2013.775005

Eloka-Eboka, A. C. and Inambao, F. L. 2017. "Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production", Applied Energy. 195: 1100–1111. doi: 10.1016/j.apenergy.2017.03.071.

Gilbert. 2012. "One-third of our greenhouse gas emissions come from agriculture." Nature (news). doi:10.1038/nature.2012.11708

Gratani, L. et al. 2016. "Carbon Dioxide (CO2) Sequestration and Air Temperature Amelioration Provided by Urban Parks in Rome", Energy Procedia. Elsevier, 101: 408–415. doi: 10.1016/j.egypro.2016.11.052.

Klimes-Szmik A. 1970. "A talajok fizikai tulajdonságainak vizsgálata." Talaj és trágyvizsgálati módszerek. 1970; (48): 83–161.

Kotroczó, Zs., Fekete, I., Tóth, J.A., Tóthmérész, B., Balázsy, S. 2018. "Effect of leaf- and root-litter manipulation for carbon-dioxide efflux in forest soi." VII. Alps-Adra Scientific Workshop. Stara Lesna, Slovakia, 2008.

Lajtha, K., Bowden, R.D., Crow, S., Fekete, I., Kotroczó, Zs., Plante, A., Simpson, M., Nadelhoffer, K. 2017. "The Detrial Input and Removal Treatment (DIRT) Network: Insight into soil carbon stabilization." Science of The Total Environment 640-641:1112-1120.

Li, S. et al. 2020. "A meta-analysis of carbon, nitrogen and phosphorus change in response to conversion of grassland to agricultural land" Geoderma 363: 114149. doi: 10.1016/j.geoderma.2019.114149.

López, R., Díaz, M. J. and González-Pérez, J. A. 2018. "Extra CO2 sequestration following reutilization of biomass ash". Science of the Total Environment. 625: 1013–1020. doi: 10.1016/j.scitotenv.2017.12.263.

Lowy, D.A. and Mátyás, B. 2020. "Sea Water Activated Magnesium-Air Reserve Batteries: Calculation of Specific Energy and Energy Density for Various Geometries." DRC Sustainable Future 2020, 1(1),1-6. DOI: 10.37281/DRCSF/1.1.1

Mátyás, B., Tállai, M., Kátai, J. et al. 2015. "The impact of fertilisation on a few microbiological parameters of the carbon cycle." Acta Agraria 64: 45–50.

Mátyás, B., Horváth, J., & Kátai, J. 2016. “Comparative analysis of certain soil microbiological characteristics of the carbon cycle”. Acta Agraria Debreceniensis, (69), 137-141.

Melendez, J. R. et al. 2018a. "Strategic factors in the context of project management: Management perspectives." Espacios. Revista Espacios 39(39). Retrieved from http://www.revistaespacios.com/a18v39n39/18393910.html

Melendez, J. R. et al. 2018b. "Theory of Constraints: A systematic review from the management context." Espacios, 39(48). Retrieve from http://www.revistaespacios.com/a18v39n48/18394801.html

Melendez, J. R. and Gracia, G. E. 2019c. "Theoretical perspective of corporate social responsibility in the managerial scenario: Shared implications between the company-stakeholders", Espacios, pp. 1–14. Retrieve from http://www.revistaespacios.com/a19v40n10/19401001.html

Moral, A., Reyero,I., Alfaro, C., Bimbela,F., Gandía, LM. 2018. "Syngas production by means of biogas catalytic partial oxidation and dry reforming using Rh-based catalysts." Catalysis Today 299:280-288.

Peng, Y. et al. 2020. "Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest." Soil Biology and Biochemistry. 142: 107694. doi: 10.1016/j.soilbio.2019.107694.

Powlson, D. Will soil amplify climate change?. Nature 433, 204–205 (2005). https://doi.org/10.1038/433204a

Rustad, LE., Campbell, JL., Marion, GM., Norby, R.J, Mitchell, MJ., Hartley, AE., Cornelissen, JHC., Gurevitch, J. 2001. "A metaanalysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming." Oecologia 126, 543–562.

Sándor, Zs., Tállai, M., Kincses, I., László, Z., Kátai, J., Vágó, I. 2020. "Effect of various soil cultivation methods on some microbial soil properties." DRC Sustainable Future 1(1): 14-20. DOI: 10.37281/DRCSF/1.1.3

Sándor, Zs. 2020. "Authors' correction for "Effect of various soil cultivation methods on some microbial soil properties."" DRC Sustainable Future 1(1): 21-22. DOI: 10.37281/DRCSF/1.1.31

Singla, A., Sakata, R., Hanazawa, S., Inubushi, K. 2014. "Methane production/oxidation potential and methanogenic archaeal diversity in two paddy soils of Japan." Int. J. Ecology Environm. Sciences 40: 49-55.

Singla, A., Inubushi, K. 2014. "Effect of biochar on CH. and N.O emission from soils vegetated with paddy. " Paddy and Water Environment 12: 239-243. doi: 10.1007/s10333-013-0357-3

Thornton, P. 2012. "Recalibrating Food Production in the Developing World: Global Warming Will Change More Than Just the Climate." CCAFS Policy Brief no. 6. (CGIAR Research Program on Climate Change, Agriculture and Food Security, 2012).

Vary, S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W., Jahn, D. 2007. "Bacillus megaterium – from simple soil bacterium to industrial protein production host." Appl. Microbial Biotechnol 76: 957–967.

Vermeulen, SJ., Campbell, BM., Ingram, JSI. 2012. Annu. Rev. Environ. Resour. 37, 195–222.

Witkamp,­M.­ 1966. “­Decomposition ­of ­leaf ­litter ­in ­relation ­to environment ­microflore ­and ­microbial ­respiration. ­Ecology.­47: 194–201.­

Xiao, H. et al. 2020. "Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China." Applied Soil Ecology 103484. doi: 10.1016/j.apsoil.2019.103484.

Zeng, W. et al. 2018. "Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands." Soil Biology and Biochemistry 124: 255–265. doi: 10.1016/j.soilbio.2018.06.019.