Presence of heavy metals in raw bovine milk from Machachi, Ecuador

Main Article Content

Francisco De la Cueva https://orcid.org/0000-0003-2671-0329
Alexandra Naranjo https://orcid.org/0000-0002-6442-0982
Byron Humberto Puga Torres http://orcid.org/0000-0002-4444-0054
Eduardo Aragón https://orcid.org/0000-0002-5142-0721

Abstract

The evaluation of heavy metals in milk can be considered as an indicator of environmental contamination of a place, so the objective of the investigation was to determine the presence of Lead, Mercury and Arsenic in raw milk from Machachi, Pichincha Province-Ecuador. Fifty eight samples were collected from twenty nine dairy farms with extensive grazing system and located up to a maximum of one kilometer around the Municipality of Machachi, where there is industrial activity and is near the Panamericana Sur. The samples were analyzed using the atomic absorption spectrophotometry technique by a hydride generator (Mercury and Arsenic) and with a graphite furnace (Lead). All the samples analyzed showed Lead levels, with an average of 0.208 mg/kg (range between 0.0016 to 0.719 mg/kg), of which 98.28% (57/58) contain levels higher than the maximum allowed by the NTE INEN 9 of 0.02 mg/kg. Mercury was also detected in four samples (mean of 0.00009 mg/kg, range between 0.00 to 0.002 mg/kg) and Arsenic in two samples (mean of 0.00003 mg/kg, range 0.00 to 0.001 mg/kg), however, the They were below the limit allowed by the Codex Alimentarius (0.01 mg/kg) in food in general. With the results obtained, it is concluded that there could be an area contaminated with Pb, so continuous monitoring of milk should be carried out, and the investigation should be expanded to possible sources of contamination, such as drinking water, irrigation water, fodder and food received by dairy cows in the area.
Abstract 318 | PDF (Español (España)) Downloads 93 PDF Downloads 90 HTML (Español (España)) Downloads 8 EPUB (Español (España)) Downloads 3

References

Alloway, B. (2013) Heavy metals in soils. Environmental Pollution. Third Edit. Brian J. Alloway (ed.). [Online]. Dordrecht, Springer Netherlands. Available from: doi:10.1007/978-94-007-4470-7.
Anastasio, A., Caggiano, R., Macchiato, M., Paolo, C., et al. (2006) Heavy metal concentrations in dairy products from sheep milk collected in two regions of Southern Italy. Acta Veterinaria Scandinavica. [Online] 47 (1), 69. Available from: doi:10.1186/1751-0147-47-69.
Arianejad, M., Alizadeh, M., Bahrami, A. & Arefhoseini, S.R. (2015) Levels of some heavy metals in raw cow’s milk from selected milk production sites in Iran: is there any health concern? Health Promotion Perspectives. [Online] 5 (3), 176–182. Available from: doi:10.15171/hpp.2015.021.
Ashraf, S., Ali, Q., Zahir, Z.A., Ashraf, S., et al. (2019) Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety. [Online] 174, 714–727. Available from: doi:10.1016/j.ecoenv.2019.02.068.
Ayala Armijos, J. & Romero Bonill, H. (2013) Presencia de metales pesados (arsénico y mercurio) en leche de vaca al sur de Ecuador. La Granja. [Online] 17 (1), 36. Available from: doi:10.17163/lgr.n17.2013.03.
Bernhoft, R.A. (2012) Mercury toxicity and treatment: a review of the literature. Journal of Environmental and Public Health. [Online] 2012, 1–10. Available from: doi:10.1155/2012/460508.
Bjørklund, G., Aaseth, J., Chirumbolo, S., Urbina, M.A., et al. (2018) Effects of arsenic toxicity beyond epigenetic modifications. Environmental Geochemistry and Health. [Online] 40 (3), 955–965. Available from: doi:10.1007/s10653-017-9967-9.
Castro-González, N.P., Calderón-Sánchez, F., Castro de Jesús, J., Moreno-Rojas, R., et al. (2018a) Heavy metals in cow’s milk and cheese produced in areas irrigated with waste water in Puebla, Mexico. Food Additives & Contaminants: Part B. [Online] 11 (1), 33–36. Available from: doi:10.1080/19393210.2017.1397060.
Castro-González, N.P., Moreno-Rojas, R., Calderón Sánchez, F., Moreno-Ortega, A., et al. (2018b) Metales pesados en leche de vacas alimentadas con alfalfa producida en suelos irrigados con aguas residuales en Puebla y Tlaxcala, México. Revista Mexicana de Ciencias Pecuarias. [Online] 9 (3), 466–485. Available from: doi:10.22319/rmcp.v9i3.4358.
Celis De La Rosa, A. & Labrada, V. (2014) Bioestadística. Tercera Ed. S.A. de C.V. Editorial El Manual Moderno (ed.). [Online]. México DF. Available from: https://www.academia.edu/21856685/Celis_De_La_Rosa_Alfredo_Y_Labrada_Vanessa_-_Bioestadistica_3ed_.
Chirinos-Peinado, D.M. & Castro-Bedriñana, J.I. (2020) Lead and cadmium blood levels and transfer to milk in cattle reared in a mining area. Heliyon. [Online] 6 (3), e03579. Available from: doi:10.1016/j.heliyon.2020.e03579.
CIL (2015) La Leche del Ecuador - Historia de la lechería ecuatoriana. Primera ed. Centro de la Industria Láctea (CIL) (ed.). [Online]. Quito-Ecuador, Centro de la Industria Láctea (CIL). Available from: http://www.pichincha.gob.ec/publicaciones/item/702-la-leche-del-ecuador.html.
Codex-Alimentarius (1995) General standard for contaminants and toxins in food and feed (Codex Stan 193-1995). [Online]. 1995. Available from: http://www.fao.org/input/download/standards/17/CXS_193e_2015.pdf.
Dergham, M., Lepers, C., Verdin, A., Billet, S., et al. (2012) Prooxidant and proinflammatory potency of air pollution particulate matter (PM 2.5–0.3) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B). Chemical Research in Toxicology. [Online] 25 (4), 904–919. Available from: doi:10.1021/tx200529v.
GeoDatos (2019) Coordenadas geográficas de Machachi, Pichincha, Ecuador. [Online]. Available from: https://www.geodatos.net/coordenadas/ecuador/pichincha/machachi.
Gomes, A.C.S., Lindino, C.A., Goncalvez Jr, A.C. & Gomes, G.D. (2013) Determinação de Cd, Cr e Pb no leite e na alimentação bovina do Brasil. Revista do Instituto Adolfo Lutz. [Online] 72 (3), 211–218. Available from: doi:10.18241/0073-98552013721566.
González-Montaña, J.-R., Senís, E., Alonso, A.-J., Alonso, M.-E., et al. (2019) Some toxic metals (Al, As, Mo, Hg) from cow’s milk raised in a possibly contaminated area by different sources. Environmental Science and Pollution Research. [Online] 26 (28), 28909–28918. Available from: doi:10.1007/s11356-019-06036-7.
González-Montaña, J. (2009) Metales pesados en carne y leche y certificación para la Unión Europea (UE). Revista Colombiana de Ciencias Pecuarias. [Online] 22 (3). Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902009000300006.
Hashemi, M. (2018) Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicology and Environmental Safety. [Online] 154, 263–267. Available from: doi:10.1016/j.ecoenv.2018.02.058.
INEC (2019) Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC) 2018. [Online]. 2019. ESPAC. Available from: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2018/Presentacion de principales resultados.pdf.
INEN (2012) Leche cruda: Requisitos NTE INEN 9. [Online]. 2012. Available from: https://www.gob.ec/sites/default/files/regulations/2018-10/Documento_BL NTE INEN 9 Leche cruda Requisitos.pdf.
INEN (2014a) Leche y productos lácteos. Determinación del contenido de plomo. Método de espectrometría de absorción atómica en horno de grafito (ISO/TS 6733:2006, IDT). [Online]. Available from: https://181.112.149.204/buzon/normas/ete_inen_iso_ts_6733.pdf.
INEN (2014b) Leche y productos lácteos. Directrices para la toma de muestras (ISO 707:2008, IDT). [Online]. pp.1–49. Available from: http://www.normalizacion.gob.ec/wp-content/uploads/downloads/2014/NORMAS_2014/ACO/17122014/nte-inen-iso-707-ext.pdf.
INEN (2011) NTE INEN 1108. [Online]. Available from: https://bibliotecapromocion.msp.gob.ec/greenstone/collect/promocin/index/assoc/HASH01a4.dir/doc.pdf.
Karasakal, A. (2020) Determination of trace and major elements in vegan milk and oils by ICP-OES after microwave digestion. Biological Trace Element Research. [Online] Publisher. Available from: doi:10.1007/s12011-019-02024-7.
Khairul, I., Wang, Q.Q., Jiang, Y.H., Wang, C., et al. (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget. [Online] 8 (14), 23905–23926. Available from: doi:10.18632/oncotarget.14733.
Kim, D.-G., Kim, M., Shin, J.Y. & Son, S.-W. (2016) Cadmium and lead in animal tissue (muscle, liver and kidney), cow milk and dairy products in Korea. Food Additives & Contaminants: Part B. [Online] 9 (1), 33–37. Available from: doi:10.1080/19393210.2015.1114032.
Koyuncu, M. & Alwazeer, D. (2019) Determination of trace elements, heavy metals, and antimony in polyethylene terephthalate–bottled local raw cow milk of Iğdır region in Turkey. Environmental Monitoring and Assessment. [Online] 191 (11), 666. Available from: doi:10.1007/s10661-019-7851-z.
Litter, M., Armienta, M. & Farías, S. (2009) Metodologías analíticas para la determinación y especiación de arsénico en aguas y suelos. CYTED (ed.). [Online]. Iberoarsen. Available from: https://paginas.fe.up.pt/~cigar/html/documents/Monografia2_000.pdf.
Miclean, Cadar, Levei, Roman, et al. (2019) Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from free-range cows. International Journal of Environmental Research and Public Health. [Online] 16 (21), 4064. Available from: doi:10.3390/ijerph16214064.
de Oliveira, T.M., Augusto Peres, J., Lurdes Felsner, M. & Cristiane Justi, K. (2017) Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries. Food Chemistry. [Online] 229, 721–725. Available from: doi:10.1016/j.foodchem.2017.02.143.
Perrin, D.J., Schiefer, B. & Blakley, B.R. (1990) Chronic copper toxicity in a dairy herd. The Canadian Veterinary Journal. [Online] 31 (9), 629–632. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480905/pdf/canvetj00082-0031.pdf.
Rezaeian, M., Tohidi Moghadam, M., Kiaei, M.M. & Mahmuod Zadeh, H. (2019) The effect of heavy metals on the nutritional value of Alfalfa: comparison of nutrients and heavy metals of Alfalfa (Medicago sativa) in industrial and non-industrial areas. Toxicological research. [Online] 36 (2), 183–193. Available from: doi:10.1007/s43188-019-00012-6.
Rocha, E. (2011) Espectroscopia de absorción atómica en horno de grafito y generador de hidruros. [Online]. 2011. Facultad De Ciencias Químicas UACH. Available from: http://fcq.uach.mx/index.php/alumno/columna-1/material-de-estudio/category/15-analisis-instrumental?download=56:lectura9.
Rocha, J.B.T., Aschner, M., Dórea, J.G., Ceccatelli, S., et al. (2012) Mercury toxicity. Journal of Biomedicine and Biotechnology. [Online] 2012, 1–2. Available from: doi:10.1155/2012/831890.
Rodríguez, L.B., López-Huertas, E. & Boza Puerta, J.J. (2010) Leche y derivados lácteos. In: Ángel Hernández (ed.). Tratado de Nutrición. Second Edi. [Online]. Madrid-España. pp. 75–106. Available from: https://es.scribd.com/doc/297686446/Tratado-de-Nutricion-tomo2.
Samiee, F., Vahidinia, A., Taravati Javad, M. & Leili, M. (2019) Exposure to heavy metals released to the environment through breastfeeding: A probabilistic risk estimation. Science of The Total Environment. [Online] 650 (2), 3075–3083. Available from: doi:10.1016/j.scitotenv.2018.10.059.
Scaramozzino, P., Battisti, S., Desiato, R., Tamba, M., et al. (2019) Application of a risk-based standardized animal biomonitoring approach to contaminated sites. Environmental Monitoring and Assessment. [Online] 191 (8), 526. Available from: doi:10.1007/s10661-019-7653-3.
Silva, C.M., Alcoforado, E.S., Amaral, R.S., Santos Júnior, J.A., et al. (2010) Stable Lead in Milk and Derivates. Food Analytical Methods. [Online] 3 (2), 85–89. Available from: doi:10.1007/s12161-009-9092-1.
Totan, F.E. & Filazi, A. (2020) Determination of some element levels in various kinds of cow’s milk processed in different ways. Environmental Monitoring and Assessment. [Online] 192 (2), 112. Available from: doi:10.1007/s10661-020-8088-6.
Vasconcelos Neto, M.C. de, Silva, T.B.C., Araújo, V.E. de & Souza, S.V.C. de (2019) Lead contamination in food consumed and produced in Brazil: Systematic review and meta-analysis. Food Research International. [Online] 126, 108671. Available from: doi:10.1016/j.foodres.2019.108671.
Wanniatie, V., Sudarwanto, M.B., Purnawarman, T. & Jayanegara, A. (2019) Chemical compositions, contaminants, and residues of organic and conventional goat milk in Bogor District, Indonesia. Veterinary World. [Online] 12 (8), 1218–1224. Available from: doi:10.14202/vetworld.2019.1218-1224.
WHO (2018) Arsenic. [Online]. 2018. Health topics. Available from: https://www.who.int/news-room/fact-sheets/detail/arsenic.
WHO (2019) Mercury. [Online]. 2019. Health topics. Available from: https://www.who.int/ipcs/assessment/public_health/mercury/en/.
Yang, L., Zhang, Y., Wang, F., Luo, Z., et al. (2020) Toxicity of mercury: molecular evidence. Chemosphere. [Online] 245, 125586. Available from: doi:10.1016/j.chemosphere.2019.125586.
Yilmaz, K., Akinci, İ.E. & Akinci, S. (2009) Effect of lead accumulation on growth and mineral composition of eggplant seedlings ( Solarium melongena ). New Zealand Journal of Crop and Horticultural Science. [Online] 37 (3), 189–199. Available from: doi:10.1080/01140670909510264.
Zhou, X., Qu, X., Zhao, S., Wang, J., et al. (2017) Analysis of 22 elements in milk, feed, and water of dairy cow, goat, and buffalo from different regions of China. Biological Trace Element Research. [Online] 176 (1), 120–129. Available from: doi:10.1007/s12011-016-0819-8.
Zhou, X., Zheng, N., Su, C., Wang, J., et al. (2019) Relationships between Pb, As, Cr, and Cd in individual cows’ milk and milk composition and heavy metal contents in water, silage, and soil. Environmental Pollution. [Online] 255 (2), 113322. Available from: doi:https://doi.org/10.1016/j.envpol.2019.113322.
Zwierzchowski, G. & Ametaj, B.N. (2018) Minerals and heavy metals in the whole raw milk of dairy cows from different management systems and countries of origin: a meta-analytical study. Journal of Agricultural and Food Chemistry. [Online] 66 (26), 6877–6888. Available from: doi:10.1021/acs.jafc.8b00904.