Effects of Hydrogel on Moisture Volume in Soils with Different Textures

Main Article Content

Rubén Darío Rivera Fernández http://orcid.org/0000-0003-2436-1321
Carlos Mora Muekay https://orcid.org/0000-0001-8714-4653
Juan Ramón Moreira Saltos http://orcid.org/0000-0003-4434-5986
Dídimo Alexander Mendoza Intriago https://orcid.org/0000-0002-6524-3228

Abstract

The objective of the study was to determine the wetting volume (wet bulb) of the hydrogel applied to three types of soil. Soils used were: a) clay (clay 52%; silt 32%; sand 16%); b) silty clay loam (36% clay; 56% silt; 6% sand) c) sandy loam (12% clay; 32% silt; 56% sand), to which 1% potassium hydrogel was applied. The application was made with previously hydrated hydrogel, in three diameters that were: 4.7, 7.0 and 10.5 cm with a length of 10 cm where the following initial volumes were obtained 173.5, 384.8 and 866 cm3 occupied by the hydrogel. The wetting volume (cm3), moisture percent, and the hydration of the hydrogel in the soil were measured. The results indicate that the humidification volume depends on the initial volume, so the higher the initial volume, the greater the humidification volume regardless of the type of soil; however, it presents a greater volume of humidification in the sandy loam soil, probably due to mobility of the water in it. The moistened area increases its humidity by 14% regardless of the type of soil. The hydration of the hydrogel in the soil only reaches 42% compared to hydrating it in free water. Determining the volume of wetting allows estimating the amount and location of hydrogel to be applied to a crop based on thebulb that needs to be formed in the soil.
Abstract 110 | PDF (Español (España)) Downloads 40 PDF Downloads 38 HTML (Español (España)) Downloads 4 EPUB (Español (España)) Downloads 1

References

Agaba H., Baguma, J; Osoto, J; Obua, J; Kabasa, J and. Hüttermann, A. (2010). Effects of Hydrogel Amendment to Different Soils on Plant Available Water and Survival of Trees under Drought Conditions, CLEAN –Soil, Air, Water. 38(4):328–335. https://doi.org/10.1002/clen.200900245.
Agaba, H; Lawrence J. B. Orikiriza, Obua J;, Kabasa, J; Worbes, M; Hüttermann, A. (2011). Hydrogel amendment to sandy soil reduces irrigation frequency and improves the biomass of Agrostis stolonifera. Agricultural Sciences. 2(4): 544-550. doi:10.4236/as.2011.24071.
Ahmed E. M., (2015). “Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. 6: 105–121. https://doi.org/10.1016/j.jare.2013.07.006.
Al-Humaid, A. I. and Moftah, A. E. (2007). Effects of Hydrophilic Polymer on the Survival of Buttonwood Seedlings Grown Under Drought Stress,” J. Plant Nutr. 30(1): 53–66. https://doi.org/10.1080/01904160601054973.
Amin, S; Rajabnezhad, S and. Kohli, K. (2009). Hydrogels as potential drug delivery systems. Sci. Res. Essay. 4(11): 1175–1183.
Cisneros, E; Cun, R; Herrera, J; González, F; Cun, S; Sarmiento, O. 2020. Effect of super absorbent polymers in the water economy. Revista Ingenieria Agícola., 10(1):21-27. http://opn.to/a/uApBC
Cortes, B; Barrera, I; Boada, L and Rodríguez, G. (2007). Evaluación de hidrogeles para aplicaciones agroforestales, Ing. e Investig., 27(3):35–44. http://www.redalyc.org/articulo.oa?id=64327305.
Chirino, E; Vilagrosa, A and Ramón, V. (2011). Using hydrogel and clay to improve the water status of seedlings for dryland restoration. Plant Soil. 344:99-110. DOI 10.1007/ s11104-011-0730-1.
Dragusin M., Martin D., Radoiu M., Moraru R., Oproiu C., Marghitu S., and Dumitrica T. (2007). Hydrogels used for medicine and agriculture,” in Gels, M. Zr’inyi, Ed. Darmstadt: Steinkopff, p. 123–125.
Fonteno, W. C and Bilderback, T. E. (1993). Impact of Hydrogel on Physical Properties of Coarse-structured Horticultural Substrates,” J. Am. Soc. Hortic. Sci. 118(2): 217–222. https://doi.org/10.21273/JASHS.118.2.217
Geesing, D and Schmidhalter, U. (2004). Infuence of sodium polyacrylate on the water-holding capacity of three different soils and effects on growth of wheat. Soil Use Manag. 20: 207–209. https://doi.org/10.1111/j.1475-2743.2004.tb00359.x
Hüttermann A,. Zommorodi, M and. Reise, K. (1999). Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res. 50(3–4):295–304. https://doi.org/10.1016/S0167-1987(99)00023-9
Idrobo H; Rodríguez A; Díaz J. (2010). Comportamiento del hidrogel en suelos arenosos. Recurso naturales y ambiente. Numero 9: 33-37. http://www.redalyc.org/articulo.oa?id=231116434.
Jankowski,K; Jankowska, J; Sosnowski, J. (2011). Rooting propefies of lawn grasses established on the basis of red fescue in the aspect of the applied hydrogel. Acta Sci. Pol. Agricultura 10(4) :69-78. Identyfikator YADDA: bwmeta1.element.agro-2ff8b725-3a97-4496-b1c0-3f3a36c10c39.
Lopes, J; Soares J; Campagnolo, M; Contro, U; de Matos, M; Guimarães, F. (2013). Sobrevivência e crescimento inicial de pinhão-manso em função da época de plantio e do uso de hidrogel. Ciência Florestal. 23(3): 489-498. https://doi.org/10.5902/1980509810560.
M’barki, N; Aissaoui, F; Chehab, H; Dabbaghi, O; Giudice, T; Boujnah, D; Mechri, B. 2019. Cultivar dependent impacto of soil amendment wiht wáter retainimg polymer on olive (Olea europaea L.) under two wáter regimes. Agricultural Water Management. 216:70-75. https://doi.org/10.1016/j.agwat.2019.01.016.
Maldonado, K.; Aldrete, A; López, J; Vaquera, H; Cetina, M. (2011). Producción de Pinus greggii Engelm en mezclas de sustrato con hidrogel y riego, en vivero. Agrociencia, 45(3):389-398.http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952011000300011.
Moorberg, Colby J. and Crouse, David A., "Soils Laboratory Manual, K-State Edition" (2017). NPP eBooks. 15. https://newprairiepress.org/ebooks/15.
Najafi F; Golchin, A and Mohebi, M. (2013). The effects of Aquasorb water-absorbing polymer and irrigation frequency on yield, water use efficiency and growth indices of greenhouse cucumber. J. Sci. & Technol. Greenhouse Culture. 4(15):14-22.
Narjary, B., Aggarwal, P., Singh, A., Chakraborty, D., & Singh, R. (2012). Water availability in diferent soils in relation to hydrogel application. Geoderma, 187, 94-101. https://doi.org/10.1016/j.geoderma.2012.03.002.
Nicolson P. and Vogt, J. (2001). Soft contact lens polymers: An evolution. Biomaterials. 22(24):3273–3283. https://doi.org/10.1016/S0142-9612(01)00165-X
Orikiriza L. J. B., Agaba H., Eilu G., Kabasa J. D., Worbes M., and Hüttermann A. (2013). Effects of Hydrogels on Tree Seedling Performance in Temperate Soils before and after Water Stress. J. Environ. Prot. 04(07):713–721. DOI: 10.4236/jep.2013.47082.
Palacios, A; Rodríguez, R; Prieto, F; Meza, J; Razo, R; y Hernández, M. (2016). Hidrogel como mitigador de estrés hídrico: una revisión. Revista Iberoamericana de Ciencias. 3(5):80-90.
Pereira, B; Araújo, G; Dos Santos, A; Dos Anjos, G; Mediros, F. 2019. Watermelon initial growwth under diferent hydrogel concentrations and shading conditions. Rev. Caatinga. 32(4):915-923. http://dx.doi.org/10.1590/1983-21252019v32n407rc.
Rivera, R y Mesías, F. (2018). Absorción de agua del hydrogel de uso agrícola y su humedecimiento de tres tipos de suelo. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 52(2): 15-21. https://bdigital.uncu.edu.ar/11587.
Rivera, R; Rodríguez, F; Mesías, F; Mendoza, D. (2018). Hydrogel for improving water use efficiency of Capsicum annuum crops in Fluvisol soil. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 52(2): 23-31. https://bdigital.uncu.edu.ar/11588.
Rojas B; Aguilar R; Prin J; Cequea H; Cunana J; Rosales E; Ramírez M. (2004). Estudio de la germinación de la semilla de tomate en suelos áridos extraídos de la Península de Araya (Venezuela) al utilizar polímeros del tipo hidrogel. Revista Iberoamericana de Polímeros. 5(1):17-27.
Ruiz, H. A.; Oliverio Sarli, G.; Gonçalves Reynaud Schaefer, C. E.; Filgueira, R. R.; Silva de Souza, F. (2016). La superficie específica de oxisoles y su relación con la retención hídrica. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 48(2): 95-105. http://revista.fca.uncu.edu.ar/index.php?option=com_content&view=article&id=404:
Santelices R. (2005). Desarrollo de una plantación de Eucaliptulus globulus establecida en primavera con diferentes tratamientos de riego. Bosque. 26(3):105-112. http://dx.doi.org/10.4067/S0717-92002005000300012.
Satriani A;. Catalano, M; Scalcione, E. (2018). The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: A case-study in Southern Italy. Agricultural Water Management. 195: 114–119. https://doi.org/10.1016/j.agwat.2017.10.008.
Wadas, J; Ribeiro da Silva, M; Cury, J; dos Santos, T. (2010). Uso de hidrogel na sobrevivência de mudas de Eucalyptus urograndis produzidas com diferentes substratos e manejos hídricos. Ciência Florestal, Santa Maria. 20(2): 217-224. https://doi.org/10.5902/198050981847.
Wang, Y. (1989). Medium and hydrogel affect production and wilting of tropical ornamental plants. HortScience. 24: 941–944.
Yazitari, F; Allahdadi, I and Abas, G. (2007). Impact of superabsorbent polymer on yield and growth analysis of soybean (Glycine max L.) under drong stress condition. Pak. J. Biol. Sci. 10(23):4190-4196. http://www.docsdrive.com/pdfs/ansinet/pjbs/2007/4190-4196.pdf