Silica from diatomeas seaweed as complex material and its importance in nanotechnology

Main Article Content

Maria Colín-García
Alejandro Heredia
Carina Dos-Santos-Rodrígues
Etelvina Figueira
Salomé F.P. Almeida
Vladimir A. Basiuk
Andrés Rodríguez-Galván
Engel G. Vrieling

Abstract

The presence of mineral deposition is very common in microorganisms, plants, mushrooms and mammals. This organisms are an excellent natural model to study the relation between the principal parts involved in the process, the biopolymeric and mineral phases. The importance of this kind of studies is the relation with nanotechnology. Being a relatively new science, nanotechnology studies the chemical and physical phenomena is a scale under the 500 nanometers. When the system under study has a biological significance, with active biologic structures, the term bionanotechnology is used. This is the case of the study of the biomineralization in diatomeas seaweed. Due to the difficulty in the production of controlled micro and nanostructures containing silica (SiO2), this study is relevant. The possible technological applications of this kind of crystals are drug liberation structures, photovoltaic cells and high performance ceramic materials. Factors that affect the geometry, mechanical and physicochemical properties are poorly understood, whereby this kind of studies are important. Understanding the interactions and processes involved in the production of biological crystals could yield to a rational production of new and sophisticated nanostructured material with a broad application in nanotechnology (hybrid semiconductors), biology and biomedicime (biomaterials, drug liberation structures). In the work we establish a “bottom up” draft of the synthesis of “biosilica” by diatomeas emphasizing the impact in nanotechnology.
Abstract 837 | PDF (Español (España)) Downloads 555

References

Arnott, H. 1976. Calcification in Higher plants. In: The mechanisms of mineralization in the invertebrate and plants. The Belle W. Baruch Library in Marine Science No. 5. Univ. Of South Carolina press.

Bell, M., Hörz y M. Zolensky. 2002. Deformation Effects in experimentally shocked iceland spar. Lunar and Planetary Science XXXIII.

Binnig, G., C. F. Quate y C. Gerber. 1986. Atomic force microscope. Phys. Rev. Lett., 56: 930 – 933.

Bourgeat-Lami, E. 2002. Organicinorganic nanosructured colloids. Journal of Nanoscience and Nanotechnology, 2(1): 1 – 24.

Carter, G. 1990. Skeletal Biomineralization: Patterns, Processes and Evolutionary trends. Van Nostrand Reinhold. N.Y.

Einhorn, T. 1996. Biomechanics of bone. In: Principles of bone biology Bilizikian. Academic Press. USA.

Heredia, A., L. Lozano, C. Martínez-Matías, M. Peña, A. Rodríguez-Hernández, R. Velázquez, M. García-Garduño, B. L. y O. E. 2002. Microstructure and thermal expansion properties of ostrich eggshell. En: MRS Spring Meeting Symposia Proceedings.

Heredia, A., L. Lozano, M. PeñaRico, A. RodríguezHernández, A. Villarreal, A. Camacho, R. Velázquez, V. Basiuk, G.-G. M. y L. Bucio. Structural principles of biopolymer-crystal interaction. En:17th European Society for Biomaterials Conference, Barcelona, Spain.

Heredia, A., A. Rodríguez-Hernández, L. Lozano, M. Peña-Rico, R. Velázquez, V. Basiuk y L. Bucio. 2005. Microstructure and thermal change of texture of calcite crystals in ostrich eggshell struthio camelus. Materials Science and Engineering: C, 25(1): 1 – 9.

Heredia, A., S. Silva, C. Santos, I. Delgadillo y E. G. Vrieling. 2008. Analysis of cross-sections of ditylum brightwelli biosilica by tapping mode atomic force microscopy and scanning electron microscopy. Journal of Scanning Probe Microscopy, 3: 19 – 24.

Lozano, L., M. Peña Rico, A. Heredia, A. GomezCortes, R. Velázquez, E. Orozco, B. L. y J. OcotlánFlores. 2002. Thermal properties of mineralized and nonmineralized type i collagen. En: MRS Spring Meeting Symposia, Proceedings.

Mann, S. 1993. Moleculat tectonics in biomineralization and biomimetic materials chemistry. Nature, 365: 499 – 505.

Mann, S. 2001. Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, U.K.

Reusch, W. 1979. Química Orgánica. McGraw Hill, México D.F.

Scheffel, A., N. Poulsen, S. Shian y N. Kröger. 2011.Nanopatterned protein microrings from a diatom that direct silica morphogenesis. PNAS, 108: 3175 – 3180.

Schäffer, T., M. Viani, D. Walters, B. Drake, E. Runge, J. Cleveland, M. Wendman y P. Hansma. 1997. An atomic force microscope for small cantilevers. Proc. SPIE, 3009.

Sherwood, D. 1976. Crystals, X-Rays and Proteins. Longman Group Ltd., U.K.

Simkiss, K. 1976. Cellular aspects of calcification. The Belle W. Baruch Library in Marine Science No. 5.Univ. Of South Carolina press.

Smith, B., T. Schäffer, M. Viani, J. Thompson, N. Frederick, J. Kindt, A. Belcher, G. Stucky, D. Morse y P. Hansma. 1999. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 399: 761 – 763.

Stollberg, R. y F. Fitch. 1975. Física. Fundamentos y Fronteras. Publicaciones Cultural, México.

Viani, M., L. Pietrasanta, J. Thompson, A. Chand, I. Gebeshuber, KindtJ.H., M. Richter, H. Hansma y P. Hansma. 2000. Probing proteinprotein interactions in real time. Nature Structural Biology, 7(8): 644 – 647.

Viani, M., T. Schäffer, G. Paloczi, L. Pietrasanta, B. Smith, J. Thompson, M. Rief, H. Gaub, K. Plaxco, A. Cleland, H. Hansma y P. Hansma. 1999. Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instrum., 70(11).

Watabe, N., V. Meenakshi, P. Blackwelder, E. Kurtz y D. Dunkelberger. 1976. Calcareous spherules in the gastropod, Pomacea paludosa. The Belle W. Baruch Library in Marine Science No. 5.Univ. Of South Carolina press.

Zallen, R. 1983. The Physics of Amorphous Solids. John Wiley & Sons, N.Y.