On the Effect of the Refinement of the Roughness Description in a 2D Approach for a Mountain River: a Case Study

Main Article Content

Sebastián Cedillo https://orcid.org/0000-0001-6866-8937
Luis Manuel Timbre Castro https://orcid.org/0000-0001-5623-0487
Esteban Patricio Samaniego Alvarado https://orcid.org/0000-0002-8728-491X
Andrés Omar Alvarado Martínez https://orcid.org/0000-0002-9125-1221

Abstract

The prediction of water levels in rivers is important to prevent economical as well as human losses caused by flooding. Hydraulic models are commonly used to predict those water levels and take actions to mitigate flooding damage. In this research, a 2D approach to solve the depth average Reynolds Average Navier Stokes (RANS) equations, called Conveyance Estimation System (CES), is analyzed to explore its capabilities for prediction. This article presents an extension of the study performed in Knight et al. (2009). More specifically, in this study, a more detailed characterization of the roughness parameter and the number of roughness zones is explored producing additional scenarios. The performance of each scenario is evaluated by means of different fitting functions using rating curves for comparison. The research shows that the use of an adequate roughness description, such as a roughness factor calibrated for the whole cross section or a boulder roughness model calibrated for the channel bed plus roughness values from the CES roughness advisor for banks, leads to optimal model results in a mountain river.
Abstract 130 | PDF (Español (España)) Downloads 43 PDF Downloads 37 HTML (Español (España)) Downloads 0 EPUB (Español (España)) Downloads 0

References

Aberle, J. and Smart, G. M. (2003) ‘The influence of roughness structure on flow resistance on steep slopes’, Journal of Hydraulic Research, 41(3), pp. 259–269. doi: 10.1080/00221680309499971.
Abril, J. B. and Knight, D. W. (2004) ‘Stage-discharge prediction for rivers in flood applying a depth-averaged model’, Journal of Hydraulic Research. doi: 10.1080/00221686.2004.9628315.
Alvarado, A. (2001) ‘‘Modelización hidrodinámica de canales de riego medianos’, Graduate thesis, Faculty of Engineering, Univ. de Cuenca, Cuenca, Ecuador in Spanish.
Bathurst, J. C. (1985) ‘Flow Resistance Estimation in Mountain Rivers’, Journal of Hydraulic Engineering, 111(4), pp. 625–643. doi: 10.1061/(ASCE)0733-9429(1985)111:4(625).
Bathurst, J. C. (2002) ‘At-a-site variation and minimum flow resistance for mountain rivers’, Journal of Hydrology, 269(1–2), pp. 11–26. doi: 10.1016/S0022-1694(02)00191-9.
Bhola, P. K., Leandro, J. and Disse, M. (2019) ‘Reducing uncertainty bounds of two-dimensional hydrodynamic model output by constraining model roughness’, Natural Hazards and Earth System Sciences Discussions. doi: 10.5194/nhess-2018-369.
Bunte, K. and Abt, S. R. (2001) ‘Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport , Hydraulics , and Streambed Monitoring’, 0, p. 450. doi: 10.1017/CBO9781107415324.004.
Camp, J., Whyte, D. and Shaw, A. (2016) Vulnerabilities Due to Flooding Events. Available at: https://rosap.ntl.bts.gov/view/dot/32095.
Chai, T. and Draxler, R. R. (2014) ‘Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature’, Geoscientific Model Development. doi: 10.5194/gmd-7-1247-2014.
Comiti, F. et al. (2007) ‘Field-derived relationships for flow velocity and resistance in high-gradient streams’, Journal of Hydrology, 340(1–2), pp. 48–62. doi: 10.1016/J.JHYDROL.2007.03.021.
Douben, K. J. (2006) ‘Characteristics of river floods and flooding: A global overview, 1985-2003’, Irrigation and Drainage, 55(SUPPL. 1), pp. 25–27. doi: 10.1002/ird.239.
Ferguson, R. (2007) ‘Flow resistance equations for gravel- and boulder-bed streams’, Water Resources Research, 43(5). doi: 10.1029/2006WR005422.
Fisher, K. and Dawson, H. (2003) ‘Reducing Uncertainty in River Flood Conveyance - Roughness Review’, Peter Allen - Williams, R & D Coordinator, Flood Management Division.
Jarrett, R. D. (1984) ‘Hydraulics of high-gradient streams’, Journal of Hydraulic Engineering, 110(11), pp. 1519–1539.
Jarrett, R. D. (1985) Determination of roughness coefficients for streams in Colorado. Available at: https://pubs.usgs.gov/wri/1985/4004/report.pdf (Accessed: 15 January 2019).
Knight, D. W. et al. (2009) Practical channel hydraulics: Roughness, conveyance and afflux. CRC Press.
Lee, A. J. and Ferguson, R. I. (2002) ‘Velocity and flow resistance in step-pool streams’, Geomorphology, 46(1–2), pp. 59–71. doi: 10.1016/S0169-555X(02)00054-5.
Marcus, W. A. et al. (1992) ‘An Evaluation of Methods for Estimating Manning’s n in Small Mountain Streams’, Mountain Research and Development, 12(3), p. 227. doi: 10.2307/3673667.
Maxwell, A. R. and Papanicolaou, A. N. (2002) ‘Step-pool morphology in high-gradient streams’, International Journal of Sediment Research, 16(3), pp. 380–390.
McCuen, R. H., Knight, Z. and Cutter, A. G. (2006) ‘Evaluation of the Nash–Sutcliffe Efficiency Index’, Journal of Hydrologic Engineering. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597).
Merz, J. and Doppmann, G. (2006) ‘Measuring Mountain Stream Discharge Using the Salt Dilution Method A practical guide’, (January).
Morvan, H. et al. (2008) ‘The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models’, Journal of Hydraulic Research, 46(2), pp. 191–208. doi: 10.1080/00221686.2008.9521855.
Nash, J. E. and Sutcliffe, J. V. (1970) ‘River flow forecasting through conceptual models part I - A discussion of principles’, Journal of Hydrology. doi: 10.1016/0022-1694(70)90255-6.
Nayak, P. C. et al. (2013) ‘Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach’, Journal of Hydrology. doi: 10.1016/j.jhydrol.2013.04.016.
Pagliara, S., Das, R. and Carnacina, I. (2008) ‘Flow resistance in large-scale roughness condition’, Canadian Journal of Civil Engineering, 35(11), pp. 1285–1293.
Papanicolaou, A. N., Bdour, A. and Wicklein, E. (2004) ‘One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams’, Journal of Hydraulic Research, 42(4), pp. 357–375. doi: 10.1080/00221686.2004.9641204.
Ritter, A. and Muñoz-Carpena, R. (2013) ‘Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments’, Journal of Hydrology. doi: 10.1016/j.jhydrol.2012.12.004.
Romero, M., Revollo, N. and Molina, J. (2010) ‘Flow resistance in steep mountain rivers in Bolivia’, Journal of Hydrodynamics, 22(5 SUPPL. 1), pp. 679–684. doi: 10.1016/S1001-6058(10)60018-2.
Wallingford, H. (2013) Reducing uncertainty in river flood conveyance, Phase 2 Conveyance Manual. Available at: http://www.river-conveyance.net/1_CES_UserGuide.pdf (Accessed: 13 October 2019).
Willmott, C. J. and Matsuura, K. (2005) ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Climate Research. doi: 10.3354/cr030079.
Wohl, E. (2000) Mountain Rivers. Washington, D. C.: American Geophysical Union (Water Resources Monograph). doi: 10.1029/WM014.
Wolman, M. G. (1954) ‘A method of sampling coarse river-bed material’, EOS, Transactions American Geophysical Union, 35(6), pp. 951–956.
Zimmermann, A. (2010) ‘Flow resistance in steep streams: An experimental study’, Water Resources Research, 46(9). doi: 10.1029/2009WR007913.