Evaluación del Riesgo Ambiental de los insecticidas Fipronil e Imidacloprid en el Camarón de río (Cryphiops caementarius)
Contenido principal del artículo
Resumen
En la actualidad, el fipronil y el imidacloprid representan aproximadamente un tercio del mercado mundial de insecticidas. En el presente estudio se evaluó el riesgo ambiental (ERA) del fipronil e imidacloprid en las postlarvas del camarón de río (Cryphiops caementarius, Molina 1782). Se realizaron bioensayos de toxicidad de corta duración en base a la CL50 (Concentración letal media) (mortalidad) y CE50 (Concentración efectiva media) (hipoactividad natatoria). Se calculó la PNEC (Concentración prevista sin efecto conocido) y los estándares ambientales disponibles para la PEC (Concentración ambiental esperada) para el fipronil y el imidacloprid para determinar los cocientes de riesgo (CR). El imidacloprid resultó con mayor riesgo para el ambiente acuático que el fipronil para la respuesta letal (mortalidad) y subletal (hipoactividad natatoria). La diferencia del riesgo observada entre ambos insecticidas pudiera deberse a sus diferentes modos de acción. C. caementarius debería ser considerado como una especie sensible al momento de definir un estándar de calidad ambiental para la conservación del ambiente acuático. Por ende, es recomendable continuar elmonitoreo para observar la presencia de estos insecticidas en los ecosistemas dulceacuícolas costeros, y reducir el uso del fipronil y del imidacloprid en los cultivos agrícolas que los emplean.
Detalles del artículo
Sección
Artículo Científico
Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 3.0 Ecuador license: works can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to Universidad Politécnica Salesiana of Ecuador for the printed edition.
Referencias
Al-Badran AA, M. Fujiwara, and M.A. Mora. (2019) Effects of insecticides, fipronil and imidacloprid, on the growth, survival, and behavior of brown shrimp Farfantepenaeus aztecus. PLoS ONE, 14(10), e0223641. Disponible en
Al-Badran, AA, M. Fujiwara, D.M. Gatlin III, and M.A. Mora. (2018) Lethal and sub-lethal effects of the insecticide fipronil on juvenile brown shrimp Farfantepenaeus aztecus. Scientific Reports, 8, 10769. Disponible en
Baltazar, G.P. y C. Colán. (2014) Algunos aspectos biológicos pesqueros de Cryphiops caementarius "camarón de rio" (Molina, 1782) en la cuenca baja del río Mala. Cientifica, 11, 30-45. Disponible en
Beketov, M.A., and M. Liess. (2008) Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Archives of environmental contamination and toxicology, 55(2), 247-253. Disponible en
Beketov, M.A., B.J. Kefford, R.B. Schäfer, and M. Liess. (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences, 110(27), 11039-11043. Disponible en
Bonmatin, J.M., C. Giorio, V. Girolami, D. Goulson, D.P. Kreutzweiser, C. Krupke, and D.A. Noome. (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 22(1), 35-67. Disponible en
Campos, S., K. Pinazo, P. Gutiérrez, y M. Quiroz. (2017) Monitoreo biológico y poblacional del recurso “Camarón de río” Cryphiops caementarius (Molina, 1782) en los ríos Majes-Camaná y Ocoña. 2015. Informe Instituto del Mar Perú, 44, 442-448. Disponible en < https://bit.ly/2V5KSnt>
Cole, L.M., R.A. Nicholson, and J.E. Casida. (1993) Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pesticide Biochemistry and Physiology, 46, 47-54. Disponible en
Cox, L., W.C. Koskinen, R. Celis, M.C. Hermosin, J. Cornejo, and P.Y. Yen. (1998) Sorption of imidacloprid on soil clay mineral and organic components. Soil Science Society of America Journal, 62, 911-915. Disponible en
Chaton, P.F., P. Ravanel, M. issut, and J.C. Meyran. (2002) Toxicity and bioaccumulation of Fipronil in the nontarget arthropodan Fauna associated with Subalpine mosquito breeding sites. Ecotoxicology and Environmental Safety, 52, 8-12. Disponible en
De la Torre, A., J. Ñuñoz, y M. Carballo. (2004) Evaluación Medioambiental y Ecotoxicológica. Sanidad Ambiental, pp. 20–24. Disponible en
EC (European Commission). (2011) Technical Guidance for Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. European Communities, Brussels, Belgium. Disponible en < https://bit.ly/2V7E08X >
Escobar-Chávez, C., L. Alvariño, and J. Iannacone. (2019) Evaluation of the Aquatic Environmental Risk of the mixture of the pesticides imidacloprid (insecticide) and propineb (Fungicide) in Daphnia magna Straus, 1820. Paideia XXI, 9, 301-332. Disponible en:
Gangwar, R.K., G.S. Jat, S.S. Rathore, and R.K. Sharma. (2016) Effect of surfactant on the efficacy of insecticides against onion thrips (Thrips tabaci). Indian Journal of Agricultural Sciences, 86 (6), 757–761. Disponible en: < https://bit.ly/3aPalIr >
Goff, A.D., P. Saranjampour, L.M. Ryan, M.L. Hladik, J.A. Covia, K.L. Armbrust, and S.M. Brander. (2017) The effects of fipronil and the photodegradation product fipronildesulfinyl on growth and gene expression in juvenile blue crabs,Callinectes sapidus, at different salinities. Aquatic Toxicology, 186, 96–104. Disponible en
Hook, S. E., H. Doan, D. Gonzago, D. Musson, J. Du, R. Kookana, and A. Kumar. (2018) The impacts of modern-use pesticides on shrimp aquaculture: An assessment for north eastern Australia. Ecotoxicology and environmental safety, 148, 770-780. Disponible en
INEI (Instituto Nacional de Estadística e Informática). (2018). Anuario de Estadísticas Ambientales, 2018. INEI. Lima. 717 pp.
Key, P., K. Chung, T. Siewicki, and M. Fulton. (2007) Toxicity of three pesticides individually and in mixture to larval grass shrimp (Palaemonetes pugio). Ecotoxicology and Environmental Safety, 68(2), 272-277. Disponible en
Malev, O., R.S. Klobu?ar, E. Fabbretti, and P. Trebše. (2012) Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non-target aquatic organisms: Microalgae Desmodesmus subspicatus and amphipod Gammarus fossarum. Pesticide biochemistry and physiology, 104(3), 178-186. Disponible en
Mendoza-Rodríguez, R. (2009) Toxicidad aguda del sulfato de cobre en postlarvas de camarón Cryphiops caementarius. Archivos de zootecnia, 58(221), 103-110. Disponible en
MINAGRI (Ministerio de Agricultura y Riego). (2020) Decreto Supremo que aprueba la modificación del Texto Único de Procedimientos Administrativo - TUPA del Servicio Nacional de Sanidad Agraria – SENASA. Decreto Supremo Nº 001-2020-MINAGRI. 21 de enero del 2020. Disponible en < https://bit.ly/3aNurTt> [consulta: 18 febrero 2020].
Ngim, K. K., and D.G. Crosby. (2001) Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields. Environmental Toxicology and Chemistry, 20(5), 972-977. Disponible en
Omar, H., H. Samir, M.S: Khalil, M.A. Ghorab, y M.J. Zwiernik. (2016) Acute water column effects concentrations (LC50, LC90) for three commonly used insecticides, two Neonicotinoids (Acetamiprid and Imidacloprid), and a recently registered Phenylpyrazole (Fipronil), exposed to common commercially cultured shrimp (Marsupenaeus japonicus). 55th Annual Meeting of the Society of Toxicology. Mohamed, K. (ed.). Disponible en
Pathak, M.K., M.K. Pandey, R.C. Gupta, and P.K. Gupta. (2018) Evaluation of different insecticides against Onion Thrips in Onion seed production. International Journal of Current Microbiology and Applied Sciences, 7, 4204-4207. Disponible en
Pisa, L.W., V. Amaral-Rogers, L.P. Belzunces, J.M. Bonmatin, C.A. Downs, D. Goulson, and C.A. Morrissey. (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22(1), 68-102. Disponible en
PNUMA/IPCS (Programa de las Naciones Unidas para el Medio Ambiente/ Programa Internacional de Seguridad de las Sustancias Químicas). (1999) Evaluation of chemical risks. Produced by the Program of the Nations United for the Ambient, the Organization the International of the Work and the Worldwide Organization of the Health, within the framework of the Inter-Organization for Programme the Sound Management of Chemical, 234 p.
PRODUCE (Ministerio de la Producción). (2007). Establecen condiciones para la actividad extractiva de las especies nativas del recurso camarón de río de la vertiente occidental de los Andes. Resolución N°083-2007-PRODUCE. 23 pp. Disponible en < https://bit.ly/3aNUmKF>
Reyes-Avalos, W. (2011) Crecimiento, reproducción y supervivencia de hembras del camarón de río Cryphiops caementarius criados en recipientes individuales. Sciéndo, 14: 77-88. Disponible en < https://bit.ly/2X9y4Pw>
Reyes-Avalos, W. (2018) El síndrome de la ecdisis incompleta en machos adultos de Cryphiops caementarius (Crustacea: Palaemonidae) y sus consecuencias en cultivo intensivo. Revista de Investigaciones Veterinarias del Perú, 29, 368-374. Disponible en
Rice, E.W., R.B. Baird, and A.D. Eaton. (2017). Standard Methods for the examination of water and wastewater, 23rd Ed. American Public Health Association, American Water Works Association, Water Environment Federation. Denver, USA.
Romero-Camarena, H., M.C.A. Zelada, y V.J.J. Álvarez. (2013) Producción larval del Camarón de río (Cryphiops caementarius) en condiciones de laboratorio, Huacho, Perú. Infinitum, 3: Disponible en < https://bit.ly/2Xg6oIW> [consulta: 20 marzo 2020]
Sánchez-Bayo, F., S. Baskaran, and I.R. Kennedy (2002) Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agriculture, Ecosystems y Environment, 91(1-3), 37-57. Disponible en:
Shan, Z., L. Wang, D. Cai, R. Gong, Z. Zhu, and F. Yu. (2003) Impact of fipronil on crustacean aquatic organisms in a paddy field-fishpond ecosystem. Bulletin of Environmental Contamination and Toxicology, 70, 746-752. Disponible en:
Smit, C.E., C. Posthuma-Doodeman, P.L.A. van Vlaardingen, and F.M.W. de Jong. (2015) Ecotoxicity of imidacloprid to aquatic organisms: derivation of water quality standards for peak and long-term exposure. Human and Ecological Risk Assessment, 21, 1608–1630. Disponible en
Sohn, L., J. Brodie, G. Couldwell, E. Demmons, and J. Sturve. (2018) Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. Ecotoxicology, 27, 900–907. Disponible en
Sotelo-Vásquez, D.L., y Iannacone, J. (2019) Acute toxicity of three pesticides (Butachlor, copper oxychloride and chlorpyrifos) on the marine benthic amphipod Apohyale grandicornis (Kroyer, 1945) (Crustacea: Hyalidae). Biotempo (Lima), 16, 241-256. Disponible en
Stevens, M.M., A.S. Burdett, E.M. Mudford, S. Helliwell, and G. Doran. (2011) The acute toxicity of fipronil to two non-target invertebrates associated with mosquito breeding sites in Australia. Acta Tropica, 117, 125–130. Disponible en
Stoorvogel, J.J., R. Jaramillo, R. Merino, y S. Kosten. (2003) Plaguicidas en el medio ambiente. Los Plaguicidas. Impactos en produccion, salud y medio ambiente en Carchi, Ecuador. (pp. 49-69). Centro International de la Papa. Lima.
Tennekes, H.A. (2018). Fipronil in surface water: An environmental calamity remaining under radar in the Netherlands. Journal of Ecology and Toxicology, 2, 111. Disponible en
Van Dijk, T.C, M.A. Van Staalduinen, and J.P. Van der Sluijs. (2013) Macroinvertebrate decline in surface water polluted with imidacloprid. PLoS One 8, e62374. Disponible en
Van der Sluijs, J.P., V. Amaral-Rogers, L.P. Belzunces, M.B. Van Lexmond, J.M. Bonmatin, M. Chagnon, and V. Girolami. (2015) Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environmental Science and Pollution Research, 22, 148–154. Disponible en
Vijver, M. G., and P.J. van den Brink. (2014) Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLOS One, 9(2), e89837. Disponible en
Wasiw G.J, and P.V. Yépez. (2015) Evaluación poblacional del Camarón Cryphiops caementarius en ríos de la costa sur del Perú. Revista de Investigaciones Veterinarias del Perú, 26, 166-181. Disponible en
Wasiw G.J, and P.V. Yépez. (2017) Evolución de la condición poblacional del Cryphiops caementarius en el río Cañete (2001-2015). Revista de Investigaciones Veterinarias del Perú, 28, 13-32. Disponible en
Al-Badran, AA, M. Fujiwara, D.M. Gatlin III, and M.A. Mora. (2018) Lethal and sub-lethal effects of the insecticide fipronil on juvenile brown shrimp Farfantepenaeus aztecus. Scientific Reports, 8, 10769. Disponible en
Baltazar, G.P. y C. Colán. (2014) Algunos aspectos biológicos pesqueros de Cryphiops caementarius "camarón de rio" (Molina, 1782) en la cuenca baja del río Mala. Cientifica, 11, 30-45. Disponible en
Beketov, M.A., and M. Liess. (2008) Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Archives of environmental contamination and toxicology, 55(2), 247-253. Disponible en
Beketov, M.A., B.J. Kefford, R.B. Schäfer, and M. Liess. (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences, 110(27), 11039-11043. Disponible en
Bonmatin, J.M., C. Giorio, V. Girolami, D. Goulson, D.P. Kreutzweiser, C. Krupke, and D.A. Noome. (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 22(1), 35-67. Disponible en
Campos, S., K. Pinazo, P. Gutiérrez, y M. Quiroz. (2017) Monitoreo biológico y poblacional del recurso “Camarón de río” Cryphiops caementarius (Molina, 1782) en los ríos Majes-Camaná y Ocoña. 2015. Informe Instituto del Mar Perú, 44, 442-448. Disponible en < https://bit.ly/2V5KSnt>
Cole, L.M., R.A. Nicholson, and J.E. Casida. (1993) Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pesticide Biochemistry and Physiology, 46, 47-54. Disponible en
Cox, L., W.C. Koskinen, R. Celis, M.C. Hermosin, J. Cornejo, and P.Y. Yen. (1998) Sorption of imidacloprid on soil clay mineral and organic components. Soil Science Society of America Journal, 62, 911-915. Disponible en
Chaton, P.F., P. Ravanel, M. issut, and J.C. Meyran. (2002) Toxicity and bioaccumulation of Fipronil in the nontarget arthropodan Fauna associated with Subalpine mosquito breeding sites. Ecotoxicology and Environmental Safety, 52, 8-12. Disponible en
De la Torre, A., J. Ñuñoz, y M. Carballo. (2004) Evaluación Medioambiental y Ecotoxicológica. Sanidad Ambiental, pp. 20–24. Disponible en
EC (European Commission). (2011) Technical Guidance for Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. European Communities, Brussels, Belgium. Disponible en < https://bit.ly/2V7E08X >
Escobar-Chávez, C., L. Alvariño, and J. Iannacone. (2019) Evaluation of the Aquatic Environmental Risk of the mixture of the pesticides imidacloprid (insecticide) and propineb (Fungicide) in Daphnia magna Straus, 1820. Paideia XXI, 9, 301-332. Disponible en:
Gangwar, R.K., G.S. Jat, S.S. Rathore, and R.K. Sharma. (2016) Effect of surfactant on the efficacy of insecticides against onion thrips (Thrips tabaci). Indian Journal of Agricultural Sciences, 86 (6), 757–761. Disponible en: < https://bit.ly/3aPalIr >
Goff, A.D., P. Saranjampour, L.M. Ryan, M.L. Hladik, J.A. Covia, K.L. Armbrust, and S.M. Brander. (2017) The effects of fipronil and the photodegradation product fipronildesulfinyl on growth and gene expression in juvenile blue crabs,Callinectes sapidus, at different salinities. Aquatic Toxicology, 186, 96–104. Disponible en
Hook, S. E., H. Doan, D. Gonzago, D. Musson, J. Du, R. Kookana, and A. Kumar. (2018) The impacts of modern-use pesticides on shrimp aquaculture: An assessment for north eastern Australia. Ecotoxicology and environmental safety, 148, 770-780. Disponible en
INEI (Instituto Nacional de Estadística e Informática). (2018). Anuario de Estadísticas Ambientales, 2018. INEI. Lima. 717 pp.
Key, P., K. Chung, T. Siewicki, and M. Fulton. (2007) Toxicity of three pesticides individually and in mixture to larval grass shrimp (Palaemonetes pugio). Ecotoxicology and Environmental Safety, 68(2), 272-277. Disponible en
Malev, O., R.S. Klobu?ar, E. Fabbretti, and P. Trebše. (2012) Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non-target aquatic organisms: Microalgae Desmodesmus subspicatus and amphipod Gammarus fossarum. Pesticide biochemistry and physiology, 104(3), 178-186. Disponible en
Mendoza-Rodríguez, R. (2009) Toxicidad aguda del sulfato de cobre en postlarvas de camarón Cryphiops caementarius. Archivos de zootecnia, 58(221), 103-110. Disponible en
MINAGRI (Ministerio de Agricultura y Riego). (2020) Decreto Supremo que aprueba la modificación del Texto Único de Procedimientos Administrativo - TUPA del Servicio Nacional de Sanidad Agraria – SENASA. Decreto Supremo Nº 001-2020-MINAGRI. 21 de enero del 2020. Disponible en < https://bit.ly/3aNurTt> [consulta: 18 febrero 2020].
Ngim, K. K., and D.G. Crosby. (2001) Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields. Environmental Toxicology and Chemistry, 20(5), 972-977. Disponible en
Omar, H., H. Samir, M.S: Khalil, M.A. Ghorab, y M.J. Zwiernik. (2016) Acute water column effects concentrations (LC50, LC90) for three commonly used insecticides, two Neonicotinoids (Acetamiprid and Imidacloprid), and a recently registered Phenylpyrazole (Fipronil), exposed to common commercially cultured shrimp (Marsupenaeus japonicus). 55th Annual Meeting of the Society of Toxicology. Mohamed, K. (ed.). Disponible en
Pathak, M.K., M.K. Pandey, R.C. Gupta, and P.K. Gupta. (2018) Evaluation of different insecticides against Onion Thrips in Onion seed production. International Journal of Current Microbiology and Applied Sciences, 7, 4204-4207. Disponible en
Pisa, L.W., V. Amaral-Rogers, L.P. Belzunces, J.M. Bonmatin, C.A. Downs, D. Goulson, and C.A. Morrissey. (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22(1), 68-102. Disponible en
PNUMA/IPCS (Programa de las Naciones Unidas para el Medio Ambiente/ Programa Internacional de Seguridad de las Sustancias Químicas). (1999) Evaluation of chemical risks. Produced by the Program of the Nations United for the Ambient, the Organization the International of the Work and the Worldwide Organization of the Health, within the framework of the Inter-Organization for Programme the Sound Management of Chemical, 234 p.
PRODUCE (Ministerio de la Producción). (2007). Establecen condiciones para la actividad extractiva de las especies nativas del recurso camarón de río de la vertiente occidental de los Andes. Resolución N°083-2007-PRODUCE. 23 pp. Disponible en < https://bit.ly/3aNUmKF>
Reyes-Avalos, W. (2011) Crecimiento, reproducción y supervivencia de hembras del camarón de río Cryphiops caementarius criados en recipientes individuales. Sciéndo, 14: 77-88. Disponible en < https://bit.ly/2X9y4Pw>
Reyes-Avalos, W. (2018) El síndrome de la ecdisis incompleta en machos adultos de Cryphiops caementarius (Crustacea: Palaemonidae) y sus consecuencias en cultivo intensivo. Revista de Investigaciones Veterinarias del Perú, 29, 368-374. Disponible en
Rice, E.W., R.B. Baird, and A.D. Eaton. (2017). Standard Methods for the examination of water and wastewater, 23rd Ed. American Public Health Association, American Water Works Association, Water Environment Federation. Denver, USA.
Romero-Camarena, H., M.C.A. Zelada, y V.J.J. Álvarez. (2013) Producción larval del Camarón de río (Cryphiops caementarius) en condiciones de laboratorio, Huacho, Perú. Infinitum, 3: Disponible en < https://bit.ly/2Xg6oIW> [consulta: 20 marzo 2020]
Sánchez-Bayo, F., S. Baskaran, and I.R. Kennedy (2002) Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agriculture, Ecosystems y Environment, 91(1-3), 37-57. Disponible en:
Shan, Z., L. Wang, D. Cai, R. Gong, Z. Zhu, and F. Yu. (2003) Impact of fipronil on crustacean aquatic organisms in a paddy field-fishpond ecosystem. Bulletin of Environmental Contamination and Toxicology, 70, 746-752. Disponible en:
Smit, C.E., C. Posthuma-Doodeman, P.L.A. van Vlaardingen, and F.M.W. de Jong. (2015) Ecotoxicity of imidacloprid to aquatic organisms: derivation of water quality standards for peak and long-term exposure. Human and Ecological Risk Assessment, 21, 1608–1630. Disponible en
Sohn, L., J. Brodie, G. Couldwell, E. Demmons, and J. Sturve. (2018) Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. Ecotoxicology, 27, 900–907. Disponible en
Sotelo-Vásquez, D.L., y Iannacone, J. (2019) Acute toxicity of three pesticides (Butachlor, copper oxychloride and chlorpyrifos) on the marine benthic amphipod Apohyale grandicornis (Kroyer, 1945) (Crustacea: Hyalidae). Biotempo (Lima), 16, 241-256. Disponible en
Stevens, M.M., A.S. Burdett, E.M. Mudford, S. Helliwell, and G. Doran. (2011) The acute toxicity of fipronil to two non-target invertebrates associated with mosquito breeding sites in Australia. Acta Tropica, 117, 125–130. Disponible en
Stoorvogel, J.J., R. Jaramillo, R. Merino, y S. Kosten. (2003) Plaguicidas en el medio ambiente. Los Plaguicidas. Impactos en produccion, salud y medio ambiente en Carchi, Ecuador. (pp. 49-69). Centro International de la Papa. Lima.
Tennekes, H.A. (2018). Fipronil in surface water: An environmental calamity remaining under radar in the Netherlands. Journal of Ecology and Toxicology, 2, 111. Disponible en
Van Dijk, T.C, M.A. Van Staalduinen, and J.P. Van der Sluijs. (2013) Macroinvertebrate decline in surface water polluted with imidacloprid. PLoS One 8, e62374. Disponible en
Van der Sluijs, J.P., V. Amaral-Rogers, L.P. Belzunces, M.B. Van Lexmond, J.M. Bonmatin, M. Chagnon, and V. Girolami. (2015) Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environmental Science and Pollution Research, 22, 148–154. Disponible en
Vijver, M. G., and P.J. van den Brink. (2014) Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLOS One, 9(2), e89837. Disponible en
Wasiw G.J, and P.V. Yépez. (2015) Evaluación poblacional del Camarón Cryphiops caementarius en ríos de la costa sur del Perú. Revista de Investigaciones Veterinarias del Perú, 26, 166-181. Disponible en
Wasiw G.J, and P.V. Yépez. (2017) Evolución de la condición poblacional del Cryphiops caementarius en el río Cañete (2001-2015). Revista de Investigaciones Veterinarias del Perú, 28, 13-32. Disponible en