Interactions between leaf area index, canopy density and effective precipitation of a Polylepis reticulata forest located in a paramo ecosystem.

Main Article Content

Amanda Suqui https://orcid.org/0000-0002-9776-3033
Rolando Célleri http://orcid.org/0000-0002-7683-3768
Patricio Crespo https://orcid.org/0000-0001-5126-0687
Galo Carrillo-Rojas https://orcid.org/0000-0003-4410-6926

Abstract

The measurement of vegetation cover is fundamental to quantify the precipitation percentage intercepted by it. The most widely techniques used to measure the cover in situ are the leaf area index (LAI) and the canopy density (CD). However, no attention has been paid to the differences recorded in the use of the two techniques or how these variables influence the hydrological balance on the throughfall (TF). For this reason, the objective of the study is to evaluate the relationship between vegetation cover measurements conducted by the LAI and CD methods and to identify how they relate with the TF, important for hydrological applications. The study was developed in a Polylepis reticulata forest of 15633 m2, located at the Zhurucay Ecohydrological Observatory, south of Ecuador, in an altitudinal range of 3765 to 3809 m.a.s.l. The LAI was measured with the CI-110 Plant Canopy Imager equipment and CD with a spherical densiometer, covering a wide range of canopy cover values. The study site was instrumented with 9 tipping-bucket rain gauges to measure TF. The results indicate that LAI and CD averages are 2.43 m2 m-2 y 88% respectively; whose relationship is significant (R2= 0.913; p<0.05). Mean annual TF is 773.2 mm, which tends to decrease with the increase of the LAI and CD; although, their relationship is not statistically significant (p-value>0.05). This study shows the importance of characterizing the vegetation cover to understand the interaction with TF.
Abstract 374 | PDF (Español (España)) Downloads 109 PDF Downloads 81 HTML (Español (España)) Downloads 12 EPUB (Español (España)) Downloads 1

References

Alfaro, G. (2015). «Caracterización de la infiltración en bosques de Polylepis spp., de 11 y 29 años, Parque Nacional Huascarán, Quebrada Quilcayhuanca, Huaraz, Ancash». Tesis de grado. Perú: Universidad Agraria La Molina. Online: https://bit.ly/3ooQaZh

Alvarado, A. y L. Muñoz (2017). «Evaluación de la regeneración natural y su relación con la altitud y cobertura de dosel en plantaciones no manejadas de Pinus patula en zonas alto Andinas, en la provincia del Azuay». Tesis de grado. Cuenca, Ecuador: Universidad de Cuenca. Online: https://bit.ly/3ol1YvI

Alvarado, I. y C. Cobos (2019). «Relaciones entre la estructura y cobertura arbórea con el carbono al macenado en bosques montanos Andinos en el macizo del Cajas, Azuay-Ecuador». Tesis de gra do. Cuenca, Ecuador: Universidad de Cuenca. Online: https://bit.ly/3yc33dL

Berger, T. y col. (2008). «Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce-beech stand». En: Forest Ecology and Management 255.3-4, 605-618. Online: https://bit.ly/3ftBtQD

Bio-Science (2016). Manual CI-110 / 120 Plant Canopy Imager. Brauman, K., D. Freyberg y G. Daily (2010). «Forest structure influences on rainfall partitioning and cloud interception: A comparison of native forest sites in Kona, Hawai’i». En: Agricultural and Forest Meteorology 150.2, 265-275. Online: https://bit.ly/3ot1jrY

Buckley, D., J. Isebrands y T. Sharik (1999). «Practical field methods of estimating canopy cover, PAR, and LAI in Michigan oak and pine stands». En: Northern Journal of Applied Forestry 16.1, 25-32. Online: https://bit.ly/3brumXW

Carlyle, D. y A. Price (2007). «Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico». En: Hydrological Processes: An International Journal 21.19, 2572-2580. Online: https://bit.ly/2Rdx7Fr

Carrillo, G. y col. (2019). «The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador». En: Agricultural and Forest Meteorology 265, 30-47. Online: https://bit.ly/2SS1odg

Cierjacks, A. y col. (2007). «Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper tree lines in central Ecuador». En: Journal of Tropical Ecology, 309-318. Online: https://bit.ly/3hwP78i

Cook, J. y col. (1995). «Spherical densiometers produce biased estimates of forest canopy cover». En: Wildlife Society Bulletin 23.4, 711-717. Online: https://bit.ly/3uTrieF

Córdova, M., G. Carrillo y R. Célleri (2013). «Errores en la estimación de la evapotranspiración de referencia de una zona de Páramo Andino debidos al uso de datos mensuales, diarios y horarios.» En: Aqua-LAC 5.2, 14-22. Online: https://bit.ly/3fem8mM

Córdova, M. y col. (2015). «Evaluation of the Penman-Monteith (FAO 56 PM) method for cal culating reference evapotranspiration using limited data». En: Mountain Research and Deve lopment 35.3, 230-239. Online: https://bit.ly/3bplNwH

Crockford, R. y D. Richardson (2000). «Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate». En: Hydrological processes 14.16-17, 2903-2920. Online: https://bit.ly/3buU0ei

Domic, A., G. Camilo y J. Capriles (2014). «Smallscale Farming and Grazing Reduce Regeneration of Polylepis tomentella (Rosaceae) in the Se iarid Andes of Bolivia». En: Biotropica 46.1, 106-113. Online: https://bit.ly/33INigu

Fleischbein, K. y col. (2005). «Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties». En: Hydrological Processes: An International Journal 19.7, 1355-1371. Online: https://bit.ly/3eMJGjI

Gareca, E. y col. (2010). «Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes». En: Biodiversity and conservation 19.12, 3327-3346. Online: https://bit.ly/3osFHvW

Germer, S., H. Elsenbeer y J. Moraes (2006). «Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, southwestern Amazonia (Rondônia, Brazil)». En: Hydrology and Earth System Sciences 10.3, 383-393. Online: https://bit.ly/3oie8FJ

Gerrits, A., L. Pfister y H. Savenije (2010). «Spatial and temporal variability of canopy and forest floor interception in a beech forest». En: Hydrological Processes 24.21, 3011-3025. Online: https://bit.ly/2RYbo4g

Gerrits, M. (2010). «The role of interception in the hydrological cycle». Doctoral thesis. Delft, Net herlands: Technische Universiteit Delft. Online: https://bit.ly/3omnEr7
Gomez, D. y col. (2008). «Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru». En: Forest Ecology and Management 255.3-4, 1315-1325. Online: https://bit.ly/3tWXhJx

Gosling, W. y col. (2009). «Long-term drivers of change in Polylepis woodland distribution in the central Andes». En: Journal of Vegetation Science 20.6, 1041-1052. Online: https://bit.ly/3eXxCfQ

Harden, C. y col. (2013). «Effects of land-use change on water in Andean páramo grassland soils». En: Annals of the Association of American Geographers 103.2, 375-384. Online: https://bit.ly/2RuPGVp

Hernández, M., D. Granados y A. Sánchez (2003). «Productividad de los ecosistemas en las regiones áridas». En: Revista Chapingo. Serie Ciencias Forestales y del Ambiente 9.2, 113-123. Online: https://bit.ly/33O6XLO

Herzog, S. y col. (2002). «Ecology and conservation of High-Andean Polylepis forests». En: Ecotropica 8, 93-95. Online: https://bit.ly/3hB4WL0

Hoch, G. y C. Körner (2005). «Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline». En: Functional Ecology 19.6, 941-951. Online: https://bit.ly/3fjdzHD

Holwerda, F., F. Scatena y L. Bruijnzeel (2006). «Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies». En: Journal of Hydrology 327.3-4, 592-602. Online: https://bit.ly/3ymj1lO

Jadán, O. y col. (2019). «Regeneración de árboles en ecosistemas naturales y plantaciones de Pinus patula (Pinaceae) dentro de un gradiente altitudinal andino (Azuay, Ecuador)». En: Revista de Biología Tropical 67.1, 182-195. Online: https://bit.ly/3f12psa

Jennings, S., N. Brown y D. Sheil (1999). «Asses sing forest canopies and understorey illumina tion: canopy closure, canopy cover and other measures». En: Forestry: An International Journal of Forest Research 72.1, 59-74. Online: https://bit.ly/2RwoANR

Johnson, M. y J. Lehmann (2006). «Doublefunneling of trees: Stemflow and root-induced preferential flow». En: Ecoscience 13.3, 324-333. Online: https://bit.ly/3tUJzqG

Keim, R., A. Skaugset y M. Weiler (2005). «Temporal persistence of spatial patterns in throughfall». En: Journal of Hydrology 314.1-4, 263-274. Online: https://bit.ly/3wd4CGD

Kessler, M. (2002). «The “Polylepis problem”: where do we stand». En: Ecotropica 8.2, 97-110. Online: https://bit.ly/3ymoHw0

Lemmon, P. (1956). «A spherical densiometer for estimating forest overstory density». En: Forest science 2.4, 314-320. Online: https://bit.ly/3eNKKDW

- (1957). «Using Forest Densiometers». En: Journal of Forestry 55.9, 1-2. Online: https://bit.ly/33LBfyP

Levia, D. y E. Frost (2006). «Variability of throughfall volume and solute inputs in wooded ecosystems». En: Progress in Physical Geography 30.5, 605-632. Online: https://bit.ly/2RV0MmL
Levia, D. y S. Herwitz (2005). «Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils». En: Catena 64.1, 117-137. Online: https://bit.ly/3eOMgFR

Levia, D. y col. (2011). «Forest Hydrology and Biogeochemistry». En: Springer. Cap. Throughfall and Stemflow in Wooded Ecosystems, 425-443. Online: https://bit.ly/3ynopVt.

Lieberman, M., D. Lieberman y R. Peralta (1989). «Forests are not just Swiss cheese: canopy ste reogeometry of non-gaps in tropical forests». En: Ecology 70.3, 550-552. Online: https://bit.ly/3w4TN9i

Llorens, P. y F. Gallart (2000). «A simplified method for forest water storage capacity measurement». En: Journal of hydrology 240.1-2, 131-144. Online: https://bit.ly/3uREiBH

Loescher, H., J. Powers y S. Oberbauer (2002). «Spatial variation of throughfall volume in an oldgrowth tropical wet forest, Costa Rica». En: Journal of Tropical Ecology, 397-407. Online: https://bit.ly/3bwU8d7

Macinnis, C. y col. (2014). «Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of Panama». En: Hydrological Processes 28.4, 2174-2184. Online: https://bit.ly/2Rne4bB

Molicová, H. y P. Hubert (1994). «Canopy influence ˆ on rainfall fields’ microscale structure in tropical forests». En: Journal of Applied Meteorology 33.12, 1464-1467. Online: https://bit.ly/3ydzWXB

Molina, A. y col. (2019). «Contributions of throughfall, forest and soil characteristics to near-surface soil water-content variability at the plot scale in a mountainous Mediterranean area». En: Science of the Total Environment 647, 1421-1432. Online: https://bit.ly/3fqMMZX

Montalvo, J. y col. (2018). «Características morfológico-funcionales, diversidad arbórea, ta sa de crecimiento y de secuestro de carbono en especies y ecosistemas de Polylepis del sur de Ecuador». En: Ecología Austral 28.1-bis, 249-261. Online: https://bit.ly/33KSQXI

Morales, L. y col. (2018). «Differential seedling regeneration patterns across forest–grassland eco tones in two tropical treeline species (Polylepis spp.)» En: Austral Ecology 43.5, 514-526. Online: https://bit.ly/3ykOMLS

Moser, G., D. Hertel y C. Leuschner (2007). «Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis». En: Ecosystems 10.6, 924-935. Online: https://bit.ly/33NC6z3

Murakami, S. (2006). «A proposal for a new forest canopy interception mechanism: Splash droplet evaporation». En: Journal of Hydrology 319.1-4, 72-82. Online: https://bit.ly/3yfx6Bn

Nadkarni, N. y M. Sumera (2004). «Old-growth forest canopy structure and its relationship to throughfall interception». En: Forest Science 50.3, 290-298. Online: https://bit.ly/3tTlMr0

Nisbet, T. (2005). «Water Use by Trees». En: Forestry Commision 65, 1-8. Online: https://bit.ly/33Lk14T

Norman, J. y G. Campbell (1989). «Plant physiological ecology». En: Springer. Cap. Canopy structur, 301-325. Online: https://bit.ly/2SLIwfO

Ochoa, A., P. Crespo y R. Célleri (2018). «Quantification of rainfall interception in the high Andean tussock grasslands». En: Ecohydrology 11.3, e1946. Online: https://bit.ly/33KbQpo

Ochoa, A. y col. (2019). «Actual evapotranspiration in the high Andean grasslands: A comparison of measurement and estimation methods». En: Frontiers in Earth Science 7, 1-16. Online: https://bit.ly/3ols2GS

Oyarzún, C. y col. (2011). «Seasonal and annual throughfall and stemflow in Andean tempera te rainforests». En: Hydrological Processes 25.4, 623-633. Online: https://bit.ly/3hCi7vc

Padrón, R. y col. (2015). «Rainfall in the Andean Páramo: new insights from high-resolution monitoring in Southern Ecuador». En: Journal of Hydrometeorology 16.3, 985-996. Online: https://bit.ly/3yfFYHa

Park, A. y J. Cameron (2008). «The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation». En: Forest Ecology and Management 255.5-6, 1915-1925. Online: https://s.si.edu/2RYcVqS

Pinos, J. (2014). «Biomasa foliar, desfronde y desomposición de la hojarasca en los rodales de Polylepis reticulata del Parque Nacional Cajas». Tesis de grado. Cuenca, Ecuador: Universidad de Cuenca. Online: https://bit.ly/3uRJg1d

Pinos, J. y col. (2017). «Leaf Litterfall and Decomposition of Polylepis reticulata in the Treeline of the Ecuadorian Andes». En: Mountain Research and Development 37.1, 87-96. Online: https://bit.ly/3hARMxX

Pukkala, T. y col. (1991). «Predicting spatial dis tribution of direct radiation below forest canopies». En: Agricultural and Forest Meteorology 55.3-4, 295-307. Online: https://bit.ly/33LmEnh

Quiroz, C. y col. (2019). «Comparison of Natural Regeneration in Natural Grassland and Pine Plantations across an Elevational Gradient in the Páramo Ecosystem of Southern Ecuador». En: Forests 10.9, 1-30. Online: https://bit.ly/2SVwUHl

Ramos Franco, A. y D. Armenteras (2019). «Interceptación y escorrentía del bosque altoandino en la reserva forestal protectora “El Malmo”». En: Acta Biológica Colombiana 24.1, 97-108. Online: https://bit.ly/3hruCKc

Rangel, O. y H. Arellano (2010). «Colombia Diversidad Biótica X. Cambio Global (Natural) y Climático (Antrópico) en el páramo colombiano. Bogotá». En: Instituto de Ciencias Naturales Facultad de Ciencias-Universidad Nacional de Colombia. Cap. Bosques De Polylepis: Un Tipo de vegetación condenado a la extinción, 443-478. Online: https://bit.ly/3yoWpki

Renison, D., I. Hensen y R. Suarez (2011). «Landscape structural complexity of high-mountain Polylepis australis forests: a new aspect of restoration goals». En: Restoration Ecology 19.3, 390-398. Online: https://bit.ly/2RlsUze

Renison, D. y col. (2006). «Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence?» En: Journal of Biogeography 33.5, 876-887. Online: https://bit.ly/3ojlLM6

Roth, B., K. Slatton y M. Cohen (2007). «On the potential for high-resolution lidar to improve rain fall interception estimates in forest ecosystems». En: Frontiers in Ecology and the Environment 5.8, 421-428. Online: https://bit.ly/2QsQda8

Staelens, J. y col. (2006). «Spatial variability and temporal stability of throughfall deposition under beech (Fagus sylvatica L.) in relationship to canopy structure». En: Environmental Pollution 142.2, 254-263. Online: https://bit.ly/33LDl1R

Teale, N. y col. (2014). «Impacts of vegetation and precipitation on throughfall heterogeneity in a tropical pre-montane transitional cloud forest». En: Biotropica 46.6, 667-676. Online: https://bit.ly/3hzDlKj

Tinoco, B. y col. (2013). «Influence of patch factors and connectivity on the avifauna of fragmented Polylepis forest in the Ecuadorian Andes». En: Biotropica 45.5, 602-611. Online: https://bit.ly/2RmA4mY

Tsiko, C. y col. (2012). «Measuring forest floor and canopy interception in a savannah ecosystem». En: Physics and Chemistry of the Earth, Parts A/B/C 47, 122-127. Online: https://bit.ly/2RmAgTe.

Valencia, B. y col. (2018). «Polylepis woodland dynamics during the last 20,000 years». En: Jour nal of Biogeography 45.5, 1019-1030. Online: https://bit.ly/33UhWn1

Weiqing, Z. y col. (2007). «Spatial variability of throughfall in a Chinese pine (Pinus tabulaeformis) plantation in northern China». En: Frontiers of Forestry in China 2.2, 169-173. Online: https://bit.ly/3uUfo4b

Wullaert, H. y col. (2009). «Spatial throughfall heterogeneity in a montane rain forest in Ecuador: extent, temporal stability and drivers». En: Journal of Hydrology 377.1-2, 71-79. Online: https://bit.ly/3eRSBk1

Zhang, G. y col. (2006). «Modelling and measurement of two-layer-canopy interception losses in a subtropical evergreen forest of central-south China». En: Hydrology and Earth System Sciences 10.1, 65-77. Online: https://bit.ly/3eOg71c

Zimmermann, A., W. Wilcke y H. Elsenbeer (2007). «Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador». En: Journal of Hydrology 343.1-2, 80-96. Online: https://bit.ly/3tS49rM

Zimmermann, A., B. Zimmermann y H. Elsenbeer (2009). «Rainfall redistribution in a tropical forest: Spatial and temporal patterns». En: Water Resources Research 45.11, 1-18. Online: https://bit.ly/3huuc5H

Zimmermann, A. y col. (2008). «Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest». En: Journal of Hydrology 360.1-4, 87-102. Online: https://bit.ly/3hwkrnt