Interactions between leaf area index, canopy density and effective precipitation of a Polylepis reticulata forest located in a paramo ecosystem.

Main Article Content

Amanda Suqui
Rolando Célleri
Patricio Crespo
Galo Carrillo-Rojas


The measurement of vegetation cover is fundamental to quantify the precipitation percentage intercepted by it. The most widely techniques used to measure the cover in situ are the leaf area index (LAI) and the canopy density (CD). However, no attention has been paid to the differences recorded in the use of the two techniques or how these variables influence the hydrological balance on the throughfall (TF). For this reason, the objective of the study is to evaluate the relationship between vegetation cover measurements conducted by the LAI and CD methods and to identify how they relate with the TF, important for hydrological applications. The study was developed in a Polylepis reticulata forest of 15633 m2, located at the Zhurucay Ecohydrological Observatory, south of Ecuador, in an altitudinal range of 3765 to 3809 m.a.s.l. The LAI was measured with the CI-110 Plant Canopy Imager equipment and CD with a spherical densiometer, covering a wide range of canopy cover values. The study site was instrumented with 9 tipping-bucket rain gauges to measure TF. The results indicate that LAI and CD averages are 2.43 m2 m-2 y 88% respectively; whose relationship is significant (R2= 0.913; p<0.05). Mean annual TF is 773.2 mm, which tends to decrease with the increase of the LAI and CD; although, their relationship is not statistically significant (p-value>0.05). This study shows the importance of characterizing the vegetation cover to understand the interaction with TF.
Abstract 374 | PDF (Español (España)) Downloads 109 PDF Downloads 81 HTML (Español (España)) Downloads 12 EPUB (Español (España)) Downloads 1


Alfaro, G. (2015). «Caracterización de la infiltración en bosques de Polylepis spp., de 11 y 29 años, Parque Nacional Huascarán, Quebrada Quilcayhuanca, Huaraz, Ancash». Tesis de grado. Perú: Universidad Agraria La Molina. Online:

Alvarado, A. y L. Muñoz (2017). «Evaluación de la regeneración natural y su relación con la altitud y cobertura de dosel en plantaciones no manejadas de Pinus patula en zonas alto Andinas, en la provincia del Azuay». Tesis de grado. Cuenca, Ecuador: Universidad de Cuenca. Online:

Alvarado, I. y C. Cobos (2019). «Relaciones entre la estructura y cobertura arbórea con el carbono al macenado en bosques montanos Andinos en el macizo del Cajas, Azuay-Ecuador». Tesis de gra do. Cuenca, Ecuador: Universidad de Cuenca. Online:

Berger, T. y col. (2008). «Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce-beech stand». En: Forest Ecology and Management 255.3-4, 605-618. Online:

Bio-Science (2016). Manual CI-110 / 120 Plant Canopy Imager. Brauman, K., D. Freyberg y G. Daily (2010). «Forest structure influences on rainfall partitioning and cloud interception: A comparison of native forest sites in Kona, Hawai’i». En: Agricultural and Forest Meteorology 150.2, 265-275. Online:

Buckley, D., J. Isebrands y T. Sharik (1999). «Practical field methods of estimating canopy cover, PAR, and LAI in Michigan oak and pine stands». En: Northern Journal of Applied Forestry 16.1, 25-32. Online:

Carlyle, D. y A. Price (2007). «Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico». En: Hydrological Processes: An International Journal 21.19, 2572-2580. Online:

Carrillo, G. y col. (2019). «The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador». En: Agricultural and Forest Meteorology 265, 30-47. Online:

Cierjacks, A. y col. (2007). «Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper tree lines in central Ecuador». En: Journal of Tropical Ecology, 309-318. Online:

Cook, J. y col. (1995). «Spherical densiometers produce biased estimates of forest canopy cover». En: Wildlife Society Bulletin 23.4, 711-717. Online:

Córdova, M., G. Carrillo y R. Célleri (2013). «Errores en la estimación de la evapotranspiración de referencia de una zona de Páramo Andino debidos al uso de datos mensuales, diarios y horarios.» En: Aqua-LAC 5.2, 14-22. Online:

Córdova, M. y col. (2015). «Evaluation of the Penman-Monteith (FAO 56 PM) method for cal culating reference evapotranspiration using limited data». En: Mountain Research and Deve lopment 35.3, 230-239. Online:

Crockford, R. y D. Richardson (2000). «Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate». En: Hydrological processes 14.16-17, 2903-2920. Online:

Domic, A., G. Camilo y J. Capriles (2014). «Smallscale Farming and Grazing Reduce Regeneration of Polylepis tomentella (Rosaceae) in the Se iarid Andes of Bolivia». En: Biotropica 46.1, 106-113. Online:

Fleischbein, K. y col. (2005). «Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties». En: Hydrological Processes: An International Journal 19.7, 1355-1371. Online:

Gareca, E. y col. (2010). «Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes». En: Biodiversity and conservation 19.12, 3327-3346. Online:

Germer, S., H. Elsenbeer y J. Moraes (2006). «Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, southwestern Amazonia (Rondônia, Brazil)». En: Hydrology and Earth System Sciences 10.3, 383-393. Online:

Gerrits, A., L. Pfister y H. Savenije (2010). «Spatial and temporal variability of canopy and forest floor interception in a beech forest». En: Hydrological Processes 24.21, 3011-3025. Online:

Gerrits, M. (2010). «The role of interception in the hydrological cycle». Doctoral thesis. Delft, Net herlands: Technische Universiteit Delft. Online:
Gomez, D. y col. (2008). «Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru». En: Forest Ecology and Management 255.3-4, 1315-1325. Online:

Gosling, W. y col. (2009). «Long-term drivers of change in Polylepis woodland distribution in the central Andes». En: Journal of Vegetation Science 20.6, 1041-1052. Online:

Harden, C. y col. (2013). «Effects of land-use change on water in Andean páramo grassland soils». En: Annals of the Association of American Geographers 103.2, 375-384. Online:

Hernández, M., D. Granados y A. Sánchez (2003). «Productividad de los ecosistemas en las regiones áridas». En: Revista Chapingo. Serie Ciencias Forestales y del Ambiente 9.2, 113-123. Online:

Herzog, S. y col. (2002). «Ecology and conservation of High-Andean Polylepis forests». En: Ecotropica 8, 93-95. Online:

Hoch, G. y C. Körner (2005). «Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline». En: Functional Ecology 19.6, 941-951. Online:

Holwerda, F., F. Scatena y L. Bruijnzeel (2006). «Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies». En: Journal of Hydrology 327.3-4, 592-602. Online:

Jadán, O. y col. (2019). «Regeneración de árboles en ecosistemas naturales y plantaciones de Pinus patula (Pinaceae) dentro de un gradiente altitudinal andino (Azuay, Ecuador)». En: Revista de Biología Tropical 67.1, 182-195. Online:

Jennings, S., N. Brown y D. Sheil (1999). «Asses sing forest canopies and understorey illumina tion: canopy closure, canopy cover and other measures». En: Forestry: An International Journal of Forest Research 72.1, 59-74. Online:

Johnson, M. y J. Lehmann (2006). «Doublefunneling of trees: Stemflow and root-induced preferential flow». En: Ecoscience 13.3, 324-333. Online:

Keim, R., A. Skaugset y M. Weiler (2005). «Temporal persistence of spatial patterns in throughfall». En: Journal of Hydrology 314.1-4, 263-274. Online:

Kessler, M. (2002). «The “Polylepis problem”: where do we stand». En: Ecotropica 8.2, 97-110. Online:

Lemmon, P. (1956). «A spherical densiometer for estimating forest overstory density». En: Forest science 2.4, 314-320. Online:

- (1957). «Using Forest Densiometers». En: Journal of Forestry 55.9, 1-2. Online:

Levia, D. y E. Frost (2006). «Variability of throughfall volume and solute inputs in wooded ecosystems». En: Progress in Physical Geography 30.5, 605-632. Online:
Levia, D. y S. Herwitz (2005). «Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils». En: Catena 64.1, 117-137. Online:

Levia, D. y col. (2011). «Forest Hydrology and Biogeochemistry». En: Springer. Cap. Throughfall and Stemflow in Wooded Ecosystems, 425-443. Online:

Lieberman, M., D. Lieberman y R. Peralta (1989). «Forests are not just Swiss cheese: canopy ste reogeometry of non-gaps in tropical forests». En: Ecology 70.3, 550-552. Online:

Llorens, P. y F. Gallart (2000). «A simplified method for forest water storage capacity measurement». En: Journal of hydrology 240.1-2, 131-144. Online:

Loescher, H., J. Powers y S. Oberbauer (2002). «Spatial variation of throughfall volume in an oldgrowth tropical wet forest, Costa Rica». En: Journal of Tropical Ecology, 397-407. Online:

Macinnis, C. y col. (2014). «Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of Panama». En: Hydrological Processes 28.4, 2174-2184. Online:

Molicová, H. y P. Hubert (1994). «Canopy influence ˆ on rainfall fields’ microscale structure in tropical forests». En: Journal of Applied Meteorology 33.12, 1464-1467. Online:

Molina, A. y col. (2019). «Contributions of throughfall, forest and soil characteristics to near-surface soil water-content variability at the plot scale in a mountainous Mediterranean area». En: Science of the Total Environment 647, 1421-1432. Online:

Montalvo, J. y col. (2018). «Características morfológico-funcionales, diversidad arbórea, ta sa de crecimiento y de secuestro de carbono en especies y ecosistemas de Polylepis del sur de Ecuador». En: Ecología Austral 28.1-bis, 249-261. Online:

Morales, L. y col. (2018). «Differential seedling regeneration patterns across forest–grassland eco tones in two tropical treeline species (Polylepis spp.)» En: Austral Ecology 43.5, 514-526. Online:

Moser, G., D. Hertel y C. Leuschner (2007). «Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis». En: Ecosystems 10.6, 924-935. Online:

Murakami, S. (2006). «A proposal for a new forest canopy interception mechanism: Splash droplet evaporation». En: Journal of Hydrology 319.1-4, 72-82. Online:

Nadkarni, N. y M. Sumera (2004). «Old-growth forest canopy structure and its relationship to throughfall interception». En: Forest Science 50.3, 290-298. Online:

Nisbet, T. (2005). «Water Use by Trees». En: Forestry Commision 65, 1-8. Online:

Norman, J. y G. Campbell (1989). «Plant physiological ecology». En: Springer. Cap. Canopy structur, 301-325. Online:

Ochoa, A., P. Crespo y R. Célleri (2018). «Quantification of rainfall interception in the high Andean tussock grasslands». En: Ecohydrology 11.3, e1946. Online:

Ochoa, A. y col. (2019). «Actual evapotranspiration in the high Andean grasslands: A comparison of measurement and estimation methods». En: Frontiers in Earth Science 7, 1-16. Online:

Oyarzún, C. y col. (2011). «Seasonal and annual throughfall and stemflow in Andean tempera te rainforests». En: Hydrological Processes 25.4, 623-633. Online:

Padrón, R. y col. (2015). «Rainfall in the Andean Páramo: new insights from high-resolution monitoring in Southern Ecuador». En: Journal of Hydrometeorology 16.3, 985-996. Online:

Park, A. y J. Cameron (2008). «The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation». En: Forest Ecology and Management 255.5-6, 1915-1925. Online:

Pinos, J. (2014). «Biomasa foliar, desfronde y desomposición de la hojarasca en los rodales de Polylepis reticulata del Parque Nacional Cajas». Tesis de grado. Cuenca, Ecuador: Universidad de Cuenca. Online:

Pinos, J. y col. (2017). «Leaf Litterfall and Decomposition of Polylepis reticulata in the Treeline of the Ecuadorian Andes». En: Mountain Research and Development 37.1, 87-96. Online:

Pukkala, T. y col. (1991). «Predicting spatial dis tribution of direct radiation below forest canopies». En: Agricultural and Forest Meteorology 55.3-4, 295-307. Online:

Quiroz, C. y col. (2019). «Comparison of Natural Regeneration in Natural Grassland and Pine Plantations across an Elevational Gradient in the Páramo Ecosystem of Southern Ecuador». En: Forests 10.9, 1-30. Online:

Ramos Franco, A. y D. Armenteras (2019). «Interceptación y escorrentía del bosque altoandino en la reserva forestal protectora “El Malmo”». En: Acta Biológica Colombiana 24.1, 97-108. Online:

Rangel, O. y H. Arellano (2010). «Colombia Diversidad Biótica X. Cambio Global (Natural) y Climático (Antrópico) en el páramo colombiano. Bogotá». En: Instituto de Ciencias Naturales Facultad de Ciencias-Universidad Nacional de Colombia. Cap. Bosques De Polylepis: Un Tipo de vegetación condenado a la extinción, 443-478. Online:

Renison, D., I. Hensen y R. Suarez (2011). «Landscape structural complexity of high-mountain Polylepis australis forests: a new aspect of restoration goals». En: Restoration Ecology 19.3, 390-398. Online:

Renison, D. y col. (2006). «Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence?» En: Journal of Biogeography 33.5, 876-887. Online:

Roth, B., K. Slatton y M. Cohen (2007). «On the potential for high-resolution lidar to improve rain fall interception estimates in forest ecosystems». En: Frontiers in Ecology and the Environment 5.8, 421-428. Online:

Staelens, J. y col. (2006). «Spatial variability and temporal stability of throughfall deposition under beech (Fagus sylvatica L.) in relationship to canopy structure». En: Environmental Pollution 142.2, 254-263. Online:

Teale, N. y col. (2014). «Impacts of vegetation and precipitation on throughfall heterogeneity in a tropical pre-montane transitional cloud forest». En: Biotropica 46.6, 667-676. Online:

Tinoco, B. y col. (2013). «Influence of patch factors and connectivity on the avifauna of fragmented Polylepis forest in the Ecuadorian Andes». En: Biotropica 45.5, 602-611. Online:

Tsiko, C. y col. (2012). «Measuring forest floor and canopy interception in a savannah ecosystem». En: Physics and Chemistry of the Earth, Parts A/B/C 47, 122-127. Online:

Valencia, B. y col. (2018). «Polylepis woodland dynamics during the last 20,000 years». En: Jour nal of Biogeography 45.5, 1019-1030. Online:

Weiqing, Z. y col. (2007). «Spatial variability of throughfall in a Chinese pine (Pinus tabulaeformis) plantation in northern China». En: Frontiers of Forestry in China 2.2, 169-173. Online:

Wullaert, H. y col. (2009). «Spatial throughfall heterogeneity in a montane rain forest in Ecuador: extent, temporal stability and drivers». En: Journal of Hydrology 377.1-2, 71-79. Online:

Zhang, G. y col. (2006). «Modelling and measurement of two-layer-canopy interception losses in a subtropical evergreen forest of central-south China». En: Hydrology and Earth System Sciences 10.1, 65-77. Online:

Zimmermann, A., W. Wilcke y H. Elsenbeer (2007). «Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador». En: Journal of Hydrology 343.1-2, 80-96. Online:

Zimmermann, A., B. Zimmermann y H. Elsenbeer (2009). «Rainfall redistribution in a tropical forest: Spatial and temporal patterns». En: Water Resources Research 45.11, 1-18. Online:

Zimmermann, A. y col. (2008). «Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest». En: Journal of Hydrology 360.1-4, 87-102. Online: