Quiralidad en las ciencias naturales: un acercamiento a distintas escalas
Contenido principal del artículo
Resumen
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 3.0 Ecuador license: works can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to Universidad Politécnica Salesiana of Ecuador for the printed edition.
Referencias
Akanuma, S. (2019). Astrobiology: From the Origins of Life to the Search for Extraterrestrial Intelligence, chapter The Common Ancestor of All Modern Life, pages 91–103. Springer.
Bada, J. (1985). Chemistry and Biochemistry of the Amino Acid, chapter Racemization of Amino Acids, pages 399–414. Springer Netherlands.
Bailey, J. (2000). Chirality and the origin of life. Act Astronautica, 46(10-12):627–631. Online: https://bit.ly/3UdWQYE.
Barrera-Calva, E., Pineda-Ledezma, R., and Barrera-Mera, B. (2012). De la quiralidad elemental a la complementariedad funcional determinante de la hermosura como producto de la interacción hemisférica cerebral. Archivos de Neurociencias, 17(2):79–84. Online: https://bit.ly/3FeRk3B.
Beléndez, A. (2008). La unificación de luz, electricidad y magnetismo: la"síntesis electromagnética" de maxwell. Revista Brasileira de Ensino de Física, 30:2601.1–2601.20. Online: https://bit.ly/3ETdEP1.
Breslow, R. (2011). The origin of homochirality in amino acids and sugars on prebiotic earth. Tetrahedron letters, 52(32):4228–4232. Online: https://bit.ly/3GV4qEw.
Cava, F., Lam, H., De Pedro, M., and Waldor, M. (2011). Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cellular and Molecular Life Sciences, 68(5):817–831. Online: https://bit.ly/3ue7tQt.
Chen, M., Wu, H., Zhang, W., and Mu, W. (2020). Microbial and enzymatic strategies for the production of l-ribose. Applied microbiology and biotechnology, 104(8):3321–3329. Online: https://bit.ly/3VG6yUU.
Craig, D. and Thirunamachandran, T. (1999). New approaches to chiral discrimination in coupling between molecules. Theoretical Chemistry Accounts, 102(1):112–120. Online: https://bit.ly/3VGF6pO.
Elder, F., Feil, E., Pascoe, B., Sheppard, S., Snape, J., Gaze, W., and Kasprzyk-Hordern, B. (2021). Stereoselective bacterial metabolism of antibiotics in environmental bacteria-a novel biochemical workflow. Frontiers in microbiology, 12:738. Online: https://bit.ly/3OMMj5E.
Evans, A., Meinert, C., Giri, C., Goesmann, F., and Meierhenrich, U. (2012). Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets. Chemical Society Reviews, 41(16):5447–5458. Online: https://rsc.li/3OQ7m7t.
Farace, C. and Aznar, L. (2011). Origen, evolución y extinción de los trilobites. INEC. Online: https://bit.ly/3VFE39H0.
Finkelshtein, A., Sirota-Madi, A., Roth, D., Ingham, C., and Ben Jacob, E. (2017). Biocommunication: Sign-Mediated Interactions between Cells and Organisms, chapter Paenibacillus vortex: a bacterial guide to the wisdom of the crowd, pages 257–283. World Scientific.
Gardner, M. (1985). Izquierda y derecha en el cosmos. Salvat Editores.
Genchi, G. (2017). An overview on d-amino acids. Amino Acids, 49(9):1521–1533. Online: https://bit.ly/3GTwwA2.
Globus, N. and Blandford, R. (2020). The chiral puzzle of life. The Astrophysical Journal Letters, 895(1):L11. Online: https://bit.ly/3irGzSL.
Gohil, N., Ramírez-García, R., Panchasara, H., Patel, S., Bhattacharjee, G., and Singh, V. (2018). Book review: quorum sensing vs. quorum quenching: a battle with no end in sight. Frontiers Media SA.
Hegstrom, R. and Kondepudi, D. (1990). The handedness of the universe. Scientific American, 262(1):108–115. Online: https://bit.ly/3OO4VSA.
Helanto, M., Kiviharju, K., Granström, T., Leisola, M., and Nyyssölä, A. (2009). Biotechnological production of l-ribose from l-arabinose. Applie microbiology and biotechnology, 83(1):77–83. Online: https://bit.ly/3uenRAD.
Ingham, C. and Jacob, E. (2008). Swarming and complex pattern formation in paenibacillus vortex studied by imaging and tracking cells. BMC microbiology, 8(1):1–16. Online: https://bit.ly/3VnyhK3.
Kohler, S. (2020). Cosmic rays as the source of life’s handedness. AAS Nova Highlights, page 6575. Online: https://bit.ly/3FiruvP.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). Mega x: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6):1547–1549. Online: https://bit.ly/3UmHGQW.
Lehninger, A., Nelson, D., and Cox, M. (2008). Lehninger principles of biochemistry. Freeman.
Livesey, G. and Brown, J. (1995). Whole body metabolism is not restricted to d-sugars because energy metabolism of l-sugars fits a computational model in rats. The Journal of nutrition, 125(12):3020–3029. Online: https://bit.ly/3VnQC9O.
Lombard, J., López-García, P., and Moreira, D. (2012). The early evolution of lipid membranes and the three domains of life. Nature Reviews Microbiology, 10(7):507–515. Online: https://go.nature.com/3H3GqPw.
Maia, A., Tiritan, M., and Castro, P. (2018). Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains labrys portucalensis f11 and rhodococcus sp. fp1. Ecotoxicology and environmental safety, 155:144–151. Online: https://bit.ly/3ERggNd.
Martínez-Frías, M. (2010). Estructura y función del adn y de los genes. i tipos de alteraciones de la función del gen por mutaciones. SEMERGENMedicina de Familia, 36(5):273–277. Online: https://bit.ly/3XMwZtW.
Nazar, J. (2007). Biofilms bacterianos. Revista de otorrinolaringología y cirugía de cabeza y cuello, 67(1):161–172. Online: https://bit.ly/3AZhBjR.
Nieto-Ortega, B. (2014). Quiralidad en Estructuras Supramoleculares: Espectroscopías de Dicroísmo Circular (ECD, VCD y ROA). PhD thesis, Universidad de Málaga.
Patty, C., Visser, L., Ariese, F., Buma, W., Sparks, W., van Spanning, R., Röling, W., and Snik, F. (2017). Circular spectropolarimetric sensing of chiral photosystems in decaying leaves. Journal of Quantitative Spectroscopy and Radiative Transfer, 189:303–311. Online: https://bit.ly/3ivtNCQ.
Pérez Benítez, A. and Arroyo Carmona, R. (2018). Enseñando helicidad y quiralidad con vasos de unicel. Educación Química, 12(3):133–137. Online https://bit.ly/3OTAYAD.
Radkov, A. and Moe, L. (2014). Bacterial synthesis of d-amino acids. Applied microbiology and biotechnology, 98(12):5363–5374. Online: https://bit.ly/3VnwmoO.
Sandars, P. (2005). Chirality in the rna world and beyond. International Journal of Astrobiology, 4(1):49–61. Online: https://bit.ly/3VpemdY.
Sasabe, J. and Suzuki, M. (2018). Distinctive roles of d-amino acids in the homochiral world: chirality of amino acids modulates mammalian physiology and pathology. The Keio journal of medicine, 68(1):1–16. Online: https://bit.ly/3FfD6Q9.
Satir, P. (2016). Chirality of the cytoskeleton in the origins of cellular asymmetry. Philosophica Transactions of the Royal Society B: Biological Sciences, 371(1710):20150408. Online: https://bit.ly/3uaUcIC.
Schilthuizen, M. and Davison, A. (2005). The convoluted evolution of snail chirality. aturwissenschaften, 92(11):504–515. Online: https://bit.ly/3Ukp8Rh.
Senge, M., Ryan, A., Letchford, K., MacGowan, S., and Mielke, T. (2014). Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry, 6(3):781– 843. Online: https://bit.ly/3FfHXAR.
StackExchange (2020). Why does the weak force distinguish left and right handedness? StackExchange. Online: https://bit.ly/3VIyJTc.
Suh, I., Park, K., Jensen, W., and Lewis, D. (1997). Molecules, crystals, and chirality. Journal of chemical education, 74(7):800. Online: https://bit.ly/3OR2oaz.
Torres-Silva, H. (2008). Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación. Ingeniare. Revista chilena de ingeniería, 16(ESPECIAL):6–23. Online: https://bit.ly/3EUvCRj.
Ussery, D. (2002). Dna structure: A-, b-and z-dna helix families. Encyclopedia of life sciences, pages 1–7. Online: https://bit.ly/3ESD92J.
Vargas, P. and Zardoya, R. (2015). El aárbol de la vida: sistemaática y evolucioón de los seres vivos. CSIC.
Vollmer, W., Blanot, D., and De Pedro, M. (2008). Peptidoglycan structure and architecture. Journal of chemical education, 74(7):149–167. Online: https://bit.ly/3ivIJ3u.
Wang, S., Furchtgott, L., Huang, K., and Shaevitz, J. (2012). Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proceedings of the National Academy of Sciences, 109(10): E595–E604. Online: https://bit.ly/3OND6Kn.
Woese, C., Kandler, O., and Wheelis, M. (1990). Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proceedings of the National Academy of Sciences, 87(12):4576–4579. Online: https://bit.ly/3EJiRJ6.
Wu, C., Ambler, E., Hayward, R., Hoppes, D., and Hudson, R. (1957). Experimental test of parity conservation in beta decay. Physical Review, 105(4):1413. Online: https://bit.ly/3ON4qZa.