Pesticides and their impact on entomofauna in Andean farmers’ fields in Ecuador

Main Article Content

Diego Mina
Jhenny Cayambe
Tatiana Cárdenas
Israel Navarrete
Olivier Dangles

Abstract

Ignorance of the rational use of insecticides leads farmers in developing countries such as Ecuador to exceed the limit of permitted applications. In addition, little is known about the effect of insecticides on entomofauna of Lupinus mutabilis (lupine). This study aims to analyze the effect of insecticides on pests and beneficial insects, with special emphasis on pollinators, without neglecting the effect on crop yield. The entomofauna associated with Andean Lupin was used as a reference. Seventy-nine agricultural fields were evaluated in Cotopaxi-Ecuador, with the treatments with chemicals, without chemicals, and without any control. Once the experiment was presented to the participating group, the farmers chose the management treatment for their fields with recommendations from the researchers. For insect monitoring, yellow sticky and plate traps were used to obtain variables of insect abundance and diversity. The use and application of pesticides was recorded using surveys developed with Survey 123. The results showed that the application of insecticides was not always effective in controlling the pests studied. In addition, the treatments evaluated had different effects according to the type of insect pollinator analyzed. On the other hand, the study also showed that certain pests, especially borers, could induce a positive response (70 % more flowers) that can actually benefit the final yield. These results suggest that pest controls for this crop should be more targeted and carried out before flowering to avoid causing damage to pollinators and borers, as well as natural enemies of pests.

Article Details

Section
Scientific Article

References

Aga, A. (2018). Merchants of knowledge: Petty retail and differentiation without consolidation among farmers in maharashtra, india. Journal of Agrarian Change, 18(3):658–676. Online: https://n9.cl/8a1cxr.

Aguado, D., Gutierrez-Chacón, C., and Muñoz, M. (2019). Estructura funcional y patrones de especialización en las relaciones planta-polinizador de un agroecosistema en el valle del cauca, colombia. Acta biológica colombiana, 24(2):331–342. Online: https://n9.cl/smtz2.

Aizen, M., Garibaldi, L., Cunningham, S., and Klein,

A. (2009). How much does agriculture depend on pollinators? lessons from long-term trends in crop production. Annals of botany, 103(9):1579– 1588. Online: https://n9.cl/68tuya.

Alandia, G. (2018). Los caminos del tarwi y la integración andina: Bolivia, Perú y Ecuador. Ipdrs, HIVOS y Cipca Altiplano.

Ali, M., Bari, M., Haque, S., Kabir, M., Afrin, S., Nowrin, F., Islam, M., and Landis, D. (2019). Establishing next-generation pest control services in rice fields: eco-agriculture. Scientific reports, 9(1):10180. Online: https://n9.cl/043qob.

Berni, I., Menouni, A., El, I., Duca, R., Kestemont, M., Godderis, L., and Jaafari, S. (2021). Understanding farmers’ safety behavior regarding pesticide use in morocco. Sustainable Production and Consumption, 25:471–483. Online: https://n9.cl/avoud3.

Botías, C. and Sánchez-Bayo, F. (2018). Papel de los plaguicidas en la pérdida de polinizadores. Ecosistemas, 27(2):34–41. Online: https://n9.cl/9f3an.

Budzinski, H. and Couderchet, M. (2018). Environmental and human health issues related to pesticides: from usage and environmental fate to impact. Environmental Science and Pollution Research, 25(15):14277–14279. Online: https://n9.cl/szbg0.

Busse, M., Zoll, F., Siebert, R., Bartels, A., Bokelmann, A., and Scharschmidt, P. (2021). How farmers think about insects: perceptions of biodiversity, biodiversity loss and attitudes towards insect-friendly farming practices. Biodiversity and conservation, 30:3045–3066. Online: https://n9.cl/00tiup.

Caicedo, V. and Peralta, I. (2000). Zonificación potencial, sistemas de producción y procesamiento artesanal del chocho (Lupinus mutabilis Sweet) en Ecuador. INIAP, Estación Experimental Santa Catalina.

Caligari, P., Römer, P., Rahim, M., Huyghe, C., Neves-Martins, J., and Sawicka-Sienkiewicz, E. (2000). The potential of Lupinus mutabilis as a crop, chapter Linking research and marketing opportunities for pulses in the 21st century: Proceedings of the third international food legumes research conference, pages 569–573.

Catarino, R., Bretagnolle, V., Perrot, T., Vialloux, F., and Gaba, S. (2019). Bee pollination outperforms pesticides for oilseed crop production and profitability. Proceedings of the Royal Society B, 286(1912):20191550. Online: https://n9.cl/ajrbl.

Chakraborty, P., Chatterjee, S., Smith, B., and Basu, P. (2021). Seasonal dynamics of plant pollinator networks in agricultural landscapes: how important is connector species identity in the network? Oecologia, 196(3):825–837. Online: https://n9.cl/wb0j2.

Chemnitz, C. (2022). Pestizidatlas: Daten und Fakten zu Giften in der Landwirtschaft. Heinrich-BöllStiftung.

Chivian, E. and Bernstein, A. (2015). Preservar la vida: de cómo nuestra salud depende de la biodiversidad. Fondo de Cultura Económica.

Cowling, W., Buirchell, B., and Tapia, M. (1998). Lupin: Lupinus albus promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research.

Damte, T. and Tabor, G. (2015). Small-scale vegetable producers’ perception of pests and pesticide uses in east shewa zone, ethiopia. International Journal of Pest Management, 61(3):212–219. Online: https://n9.cl/f01ox.

de Oliveira, A., Junqueira, C., and Augusto, S. (2019). Pesticides affect pollinator abundance and productivity of sunflower (helianthus annuus l.). Journal of Apicultural Research, 58(1):2–8. Online: https://n9.cl/pdzin3.

Dunn, L., Lequerica, M., Reid, C., and Latty, T. (2020). Dual ecosystem services of syrphid flies (diptera: Syrphidae): pollinators and biological control agents. Pest management science, 76(6):1973–1979. Online: https://n9.cl/v799v.

Egan, P., Dicks, L., Hokkanen, H., and Stenberg, J. (2020). Delivering integrated pest and pollinator management (ippm). Trends in Plant Science, 25(6):577–589. Online: https://n9.cl/rpf74.

FAO (2017). Pesticide use, our world in data. FAO. Online: https://n9.cl/vgms3.

Forister, M., Pelton, E., and Black, S. (2019). Declines in insect abundance and diversity: We know enough to act now. Conservation Science and Practice, 1(8):e80. Online: https://n9.cl/4iztx.

García, L. and Eubanks, M. (2019). Overcompensation for insect herbivory: a review and metaanalysis of the evidence. Ecology, 100(3):e02585. Online: https://n9.cl/1p1uz.

Garibaldi, L., Carvalheiro, L., Vaissière, B., Gemmill-Herren, B., Hipólito, J., Freitas, B., Ngo, H., Azzu, N., Sáez, A., and Åström, J. (2016). Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 351(6271):388–391. Online: https://n9.cl/5d6lg.

Garibaldi, L., Sáez, A., Aizen, M., Fijen, T., and Bartomeus, I. (2020). Crop pollination management needs flower-visitor monitoring and target values. Journal of Applied Ecology, 57(4):664–670. Online: https://n9.cl/2x47x.

Gould, F., Brown, Z., and Kuzma, J. (2018). Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science, 360(6390):728–732. Online: https://n9.cl/6bon4.

Goulson, D. (2019). The insect apocalypse, and why it matters. Current Biology, 29(19):R967–R971. Online: https://n9.cl/olrlo4.

Hammer, Ø., Harper, D., and Ryan, P. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1):1–9. Online: https://n9.cl/68tuya.

Heinz, K., Parrella, M., and Newman, J. (1992). Time-efficient use of yellow sticky traps in monitoring insect populations. Journal of Economic Entomology, 85(6):2263–2269. Online: https://n9.cl/s0f9p.

Hernández, A., Gil, F., and Lacasaña, M. (2017). Toxicological interactions of pesticide mixtures: an update. Archives of toxicology, 91:3211–3223. Online: https://n9.cl/wzje2.

Inaturalist (2022). Inpo-chocho (insectos polinizadores del chocho). iNaturalist. Online: https://n9.cl/j818t.

INEC (2015). Estadísticas agropecuarias. INEC. Online: https://n9.cl/y21b.

Jallow, M., Awadh, D., Albaho, M., Devi, V., and Thomas, B. (2017). Pesticide risk behaviors and factors influencing pesticide use among farmers in kuwait. Science of the total environment, 574:490–

Online: https://n9.cl/421z7j.

Khan, M., Mahmood, H., and Damalas, C. (2015). Pesticide use and risk perceptions among farmers in the cotton belt of punjab, pakistan. Crop Protection, 67:184–190. Online: https://n9.cl/4rp16.

Klein, A., Vaissière, B., Cane, J., Steffan-Dewenter, I., Cunningham, S., Kremen, C., and Tscharntke,

T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: biological sciences, 274(1608):303–313. Online: https://n9.cl/schcs.

Magrach, A., Champetier, A., Krishnan, S., Boreux, V., and Ghazoul, J. (2019). Uncertainties in the value and opportunity costs of pollination services. Journal of Applied Ecology, 56(7):1549–1559. Online: https://n9.cl/azsye.

Mengistie, B., Mol, A., and Oosterveer, P. (2017). Pesticide use practices among smallholder vegetable farmers in ethiopian central rift valley. Environment, Development and Sustainability, 19:301–

Online: https://n9.cl/umfug.

Miguel-Peñaloza, A., Delgado-Salinas, A., and Jiménez-Durán, K. (2019). Pollination biology and breeding system of desmodium grahamii (fabaceae, papilionoideae): functional aspects of flowers and bees. Plant Systematics and Evolution, 305:743–754. Online: https://n9.cl/jkmkg.

Mina, D., Struelens, Q., Carpio, C., Rivera, M., Rebai, N., Rebaudo, F., and Dangles, O. (2017). Lupin pest management in the ecuadorian andes: current knowledge and perspectives. Outlooks on Pest Management, 28(6):250–256. Online: https://n9.cl/wp8hs.

Nicklin, C., Rivera, M., and Nelson, R. (2006). Realizing the potential of an andean legume: roles of market-led and research-led innovations. International Journal of Agricultural Sustainability, 4(1):61–

Online: https://n9.cl/p3s6j.

Pacífico da Silva, I., Oliveira, F., Pedroza, H., Gadelha, I., Melo, M., and Soto-Blanco, B. (2015). Pesticide exposure of honeybees (apis mellifera) pollinating melon crops. Apidologie, 46:703–715. Online: https://n9.cl/pcgb8.

Padron, P., Vásquez, C., Durán, S., Pezo, K., Loyola, N., and Junghanns, A. (2021). Use of colored pan traps method for monitoring insect (diptera and hymenoptera) diversity in the southern tropical andes of ecuador. International Journal of Tropical Insect Science, 41:643–652. Online: https://n9.cl/rbyekd.

Pan, Y., Ren, Y., and Luning, P. (2021). Factors influencing chinese farmers’ proper pesticide application in agricultural products-a review. Food Control, 122:107788. Online: https://n9.cl/r12wx.

Potts, S., Biesmeijer, J., Kremen, C., Neumann, P., Schweiger, O., and Kunin, W. (2010). Global pollinator declines: trends, impacts and drivers. Trends in ecology y evolution, 25(6):345–353. Online: https://n9.cl/kbf401.

Poveda, K., Díaz, M., and Ramírez, A. (2018). Can overcompensation increase crop production? Ecology, 99(2):270–280. Online: https://n9.cl/98jm3.

Sánchez-Bayo, F. and Wyckhuys, K. (2019). Qué provoca el declive de los insectos. Investigacion y Ciencia, 517:12–14. Online: https://n9.cl/ezu5la.

Saunders, M. and Luck, G. (2013). Pan trap catches of pollinator insects vary with habitat. Australian Journal of Entomology, 52(2):106–113. Online: https://n9.cl/1xjra.

Sawe, T., Nielsen, A., and Eldegard, K. (2020). Crop pollination in small-scale agriculture in tanzania: Household dependence, awareness and conservation. Sustainability, 12(6):2228. Online: https://n9.cl/2moi8.

Scarlato, M., Dogliotti, S., Bianchi, F., and Rossing, W. (2022). Ample room for reducing agrochemical inputs without productivity loss: the case of vegetable production in uruguay. Science of the Total Environment, 810:152248. Online: https://n9.cl/ppl6v.

Shah, N., Junejo, I., Hullio, M., Maitlo, S., Daar, J., and Rajput, S. (2020). Evaluation of colored sticky traps for monitoring the population of whitefly bemisia tabaci (gennadius) on brinjal crop. Pakistan journal of agricultural research, 33(2):327–330. Online: https://n9.cl/4m7b8.

Sherwood, S., Cole, D., Crissman, C., and Paredes,M. (2005). From pesticides to people: improving ecosystem health in the northern andes. The Pesticide Detox: towards a more sustainable agriculture, pages 147–164. Online: https://n9.cl/o6d5u.

SINAGAP (2014). Resumen ejecutivo, zonificacion agroecológica económica del cultivo de chocho en ecuador, escala 1:250.000, 2014. Technical report, SINAGAP. Online: https://n9.cl/888qr.

Stanley, D., Garratt, M., Wickens, J., Wickens, V., Potts, S., and Raine, N. (2015). Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 528(7583):548–

Online: https://n9.cl/24v8ne.

Stenberg, J. (2017). A conceptual framework for integrated pest management. Trends in plant science, 22(9):759–769. Online: https://n9.cl/jtkey6.

Struelens, Q., Mina, D., and Dangles, O. (2021). Combined effects of landscape composition and pesticide use on herbivore and pollinator functions in smallholder farms. CABI Agriculture and Bioscience, 2(7):1–9. Online: https://n9.cl/x7d80.

Temreshev, I., Esenbekova, P., Kenzhegaliev, Y., Sagitov, A., Muhamadiev, N., and Homziak, J. (2017). Diurnal insect pollinators of legume forage crops in southeastern kazakhstan. International Journal of Entomology Research, 2(2):17–30. Online: https://n9.cl/8bkp6.

Wen, X., Ma, C., Sun, M., Wang, Y., Xue, X., Chen, J., Song, W., Li-Byarlay, H., and Luo, S. (2021). Pesticide residues in the pollen and nectar of oilseed rape (brassica napus l.) and their potential risks to honey bees. Science of the Total Environment, 786:147443. Online: https://n9.cl/0ngjr.

Willett, D., Filgueiras, C., Nyrop, J., and Nault, B. (2020). Field monitoring of onion maggot (delia antiqua) fly through improved trapping. Journal of Applied Entomology, 144(5):382–387. Online: https://n9.cl/kjpjkq.

Wyckhuys, K., Heong, K., Sanchez-Bayo, F., Bianchi, F., Lundgren, J., and Bentley, J. (2019). Ecological illiteracy can deepen farmers’ pesticide dependency. Environmental Research Letters, 14(9):093004. Online: https://n9.cl/4usqq6.

Zibaee, A. and Malagoli, D. (2020). The potential immune alterations in insect pests and pollinators after insecticide exposure in agroecosystem. Invertebrate Survival Journal, pages 99–107. Online: https://n9.cl/klsm3.