Eficacia de Vitrakvi (Larotrectinib) para el tratamiento de tumores sólidos portadores de genes NTRK y el impacto de las mutaciones TRKC

Contenido principal del artículo

Ali Adel Dawood

Resumen

Vitrakvi es un tratamiento oncológico dirigido a tumores sólidos que presentan fusiones génicas del gen NTRK. Las alteraciones en los genes NTRK constituyen efectos genéticos poco comunes que pueden manifestarse en tumores originados en diversos órganos, incluidos los pulmones, las glándulas tiroideas y el intestino. El objetivo de este estudio fue identificar el sitio de unión de Vitrakvi a las quinasas del receptor de tropomiosina (TRK), así como evaluar los efectos de las mutaciones en TRKC sobre el sitio de fusión. Para obtener la estructura química de Vitrakvi se utilizaron recursos como PubChem, y la estructura tridimensional de las TRK se obtuvo del Protein Data Bank (PDB). El acoplamiento molecular (docking) se llevó a cabo mediante el programa AutoDock Vina. Las simulaciones de acoplamiento, visualización y reconstrucción de las secuencias se realizaron utilizando los programas PyMol, BIOVIA y PyRx. La fusión de Vitrakvi con TRKA y TRKB se ve modificada cuando estas quinasas se combinan con sus respectivos estimuladores (BDGF y NT-4/5). En el caso de TRKC, la unión con Vitrakvi ocurre en la misma cadena que se acopla a su estimulador (NT-3); sin embargo, el sitio de fusión se desplaza respecto al sitio de la triple mutación. Aunque los ensayos clínicos con inhibidores de TRK se encuentran en fases iniciales, existen fundamentos prometedores para la esperanza tanto en pacientes con mutaciones en TRK como en el campo de las terapias dirigidas molecularmente.

Detalles del artículo

Sección
Artículo Científico

Referencias

Amatu, A., Sartore-Bianchi, A., and Siena, S. (2016). Ntrk gene fusions as novel targets of cancer therapy across multiple tumor types. ESMO Open, 1(2):e000023. Online: https://n9.cl/zhwvo.

Ardini, E., Menichincheri, M., Banfi, P., Bosotti, R., De Ponti, C., Pulci, R., Ballinari, D., Ciomei, M., Texido, G., Degrassi, A., Avanzi, N., Amboldi, N., Saccardo, M. B., Casero, D., Orsini, P., Bandiera, T., Mologni, L., Anderson, D., Wei, G., Harris, J., Vernier, J.-M., Li, G., Felder, E., Donati, D., Isacchi, A., Pesenti, E., Magnaghi, P., and Galvani, A. (2016). Entrectinib, a pan-trk, ros1, and alk inhibitor with activity in multiple molecularly defined cancer indications. Molecular Cancer Therapeutics, 15(4):628–639. Online: https://n9.cl/cv2zja.

Arevalo, J. C., Conde, B., Hempstead, B. L., Chao, M. V., Martin-Zanca, D., and Perez, P. (2000). Trka immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor. Molecular and Cellular Biology, 20(16):5908– 5916. Online: https://n9.cl/iyxio.

Boulle, F., Kenis, G., Cazorla, M., Hamon, M., Steinbusch, H. W. M., Lanfumey, L., and van den Hove, D. L. A. (2012). Trkb inhibition as a therapeutic target for cns-related disorders. Progress in Neurobiology, 98(2):197–206. Online: https://n9.cl/3fbuyr.

Bové, M., Monto, F., Guillem-Llobat, P., Ivorra, M. D., Noguera, M. A., Zambrano, A., SirerolPiquer, M. S., Requena, A. C., García-Alonso, M., Tejerina, T., Real, J. T., Farinãs, I., and D’Ocon, P. (2021). Nt3/trkc pathway modulates the expression of ucp-1 and adipocyte size in human and rodent adipose tissue. Frontiers in Endocrinology, 12:630097. Online: https://n9.cl/3w0dm0.

Burris, H. A., Shaw, A. T., Bauer, T. M., Farago, A. F., Doebele, R. C., Smith, S., Nanda, N., Cruickshank, S., Low, J. A., and Brose, M. S. (2015). Pharmacokinetics (pk) of loxo-101 during the first-in-human phase i study in patients with advanced solid tumors: interim update. Cancer Research, 75. Online: https://n9.cl/i2rq41.

Chaldakov, G. N., Fiore, M., Stankulov, I. S., Manni, L., Hristova, M. G., Antonelli, A., Ghenev, P. I., and Aloe, L. (2004). Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for ngf and bdnf in cardiovascular disease? Progress in Brain Research, 146:279–289. Online: https://n9.cl/69mra.

Cocco, E., Schram, A. M., Kulick, A., Misale, S.,Won, H. H., Yaeger, R., Razavi, P., Ptashkin, R., Hechtman, J. F., Toska, E., Cownie, J., Somwar, R., Shifman, S., Mattar, M., Selçuklu, S. D., Samoila, A., Guzman, S., Tuch, B. B., Ebata, K., de Stanchina, E., Nagy, R. J., Lanman, R. B., Houck-Loomis, B., Patel, J. A., Berger, M. F., Ladanyi, M., Hyman, D. M., Drilon, A., and Scaltriti, M. (2019). Resistance to trk inhibition mediated by convergent mapk pathway activation. Nature Medicine, 25:1422–1427. Online: https://n9.cl/fxa8g.

Coppola, V., Barrick, C. A., Southon, E. A., Celeste, A., Wang, K., Chen, B., Haddad, E.-B., Yin, J., Nussenzweig, A., Subramaniam, A., and Tessarollo, L. (2004). Ablation of trka function in the immune system causes b-cell abnormalities. Development, 131(20):5185–5195. Online: https://n9.cl/986yc.

De Braud, F. G. M., Pilla, L., Niger, M., Damian, S., Bardazza, B., Martinetti, A., Pelosi, G., Marrapese, G., Palmer, L., Cerea, G., Valtorta, E., Veronese, S., Sartore-Bianchi, A., Ardini, E., Martignoni, M., Isacchi, A., Pearson, P., Luo, D., Freddo, J. L., and Siena, S. (2014). Rxdx-101, an oral pan-trk, ros1, and alk inhibitor, in patients with advanced solid tumors with relevant molecular alterations. Annals of Oncology, 25(Suppl 4):iv146–iv164. Online: https://n9.cl/o3k0f.

Doebele, R. C., Davis, L. E., Vaishnavi, A., Le, A. T., Estrada-Bernal, A., Keysar, S., Jimeno, A., Varella Garcia, M., Aisner, D. L., Li, Y., Stephens, P. J., Morosini, D., Tuch, B. B., Fernandes, M., Nanda, N., and Low, J. A. (2015). An oncogenic ntrk fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor loxo-101. Cancer Discovery, 5(10):1049–1057. Online: https://n9.cl/c8uuj.

Doz, F., van Tilburg, C. M., Geoerger, B., Hø jgaard, M., Øra, I., Boni, V., Capra, M., Chisholm, J., Chung, H. C., DuBois, S. G., Gallego-Melcon, S., Gerber, N. U., Goto, H., Grilley-Olson, J. E., Hansford, J. R., Hong, D. S., Italiano, A., Kang, H. J., Nysom, K., Thorwarth, A., Stefanowicz, J., Tahara, M., Ziegler, D. S., Gavrilovic, I. T., Norenberg, R., Dima, L., De La Cuesta, E., Laetsch, T. W., Drilon, A., and Perreault, S. (2022). Efficacy and safety of larotrectinib in trk fusion-positive primary central nervous system tumors. Neuro-Oncology, 24(6):997–1007. Online: https://n9.cl/m142w.

Drilon, A., Tan, D. S. W., Lassen, U. N., Leyvraz, S., Liu, Y., Patel, J. D., Rosen, L., Solomon, B., Norenberg, R., Dima, L., Brega, N., Shen, L., Moreno, V., Kummar, S., and Lin, J. J. (2022). Efficacy and safety of larotrectinib in patients with tropomyosin receptor kinase fusion-positive lung cancers. JCO Precision Oncology, 6:e2100418. Online: https://n9.cl/6xpa3.

Dwivedi, Y., Rizavi, H. S., Conley, R. R., Roberts, R. C., Tamminga, C. A., and Pandey, G. N. (2003). Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase b in postmortem brain of suicide subjects. Archives of General Psychiatry, 60(8):804–815. Online: https://n9.cl/i9jwmi.

Ernst, C., Deleva, V., Deng, X., Sequeira, A., Pomarenski, A., Klempan, T., Ernst, N., Quirion, R., Gratton, A., Szyf, M., and Turecki, G. (2009). Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase b in the frontal cortex of suicide completers. Archives of General Psychiatry, 66(1):22–32. Online: https://n9.cl/bt3kmx.

Federman, N. and McDermott, R. (2019). Larotrectinib, a highly selective tropomyosin receptor kinase (trk) inhibitor for the treatment of trk fusion cancer. Expert Review of Clinical Pharmacology, 12(10):931–939. Online: https://n9.cl/yl7v2.

Ferrer, I., Marín, C., Rey, M. J., Ribalta, T., Goutan, E., Blanco, R., Tolosa, E., and Martí, E. (1999). Bdnf and full-length and truncated trkb expression in alzheimer disease. implications in therapeutic strategies. Journal of Neuropathology and Experimental Neurology, 58(7):729–739. Online: https://n9.cl/5qmtqj.

Hashimoto, T., Bergen, S. E., Nguyen, Q. L., Xu, B., Monteggia, L. M., Pierri, J. N., Sun, Z., Sampson, A. R., and Lewis, D. A. (2005). Relationship of brain-derived neurotrophic factor and its receptor trkb to altered inhibitory prefrontal circuitry in schizophrenia. Journal of Neuroscience, 25(2):372–383. Online: https://n9.cl/wji2t.

Hong, D. S., DuBois, S. G., Kummar, S., Farago, A. F., Albert, C. M., Rohrberg, K. S., van Tilburg, C. M., Nagasubramanian, R., Berlin, J. D., Federman, N., Mascarenhas, L., Geoerger, B., Dowlati, A., Pappo, A. S., Bielack, S., Doz, F., McDermott, R., Patel, J. D., Schilder, R. J., Tahara, M., Pfister, S. M., Witt, O., Ladanyi, M., Rudzinski, E. R., Nanda, S., Childs, B. H., Laetsch, T. W., Hyman, D. M., and Drilon, A. (2020). Larotrectinib in patients with trk fusion-positive solid tumors: a pooled analysis of three phase 1/2 clinical trials. The Lancet Oncology, 21(4):531–540. Online: https://n9.cl/1zmfq.

Ivanov, S. V., Panaccione, A., Brown, B., Guo, Y., Moskaluk, C. A., Wick, M. J., Brown, J. L., Ivanova, A. V., Issaeva, N., El-Naggar, A. K., and Yarbrough, W. G. (2013). Trkc signaling is activated in adenoid cystic carcinoma and requires nt-3 to stimulate invasive behavior. Oncogene, 32:3698– 3710. Online: https://n9.cl/nzp7h.

Keeler, A. B., Suo, D., Park, J., and Deppmann,

C. D. (2017). Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets. Molecular and Cellular Neuroscience, 82:66–75. Online: https://n9.cl/r0f7qo.

Laetsch, T. W., DuBois, S. G., Mascarenhas, L., Turpin, B., Federman, N., Albert, C. M., Nagasubramanian, R., Davis, J. L., Rudzinski, E., Feraco, A. M., Tuch, B. B., Ebata, K. T., Reynolds, M., Smith, S., Cruickshank, S., Cox, M. C., Pappo, A. S., and Hawkins, D. S. (2018). Larotrectinib for pediatric solid tumors harboring ntrk gene fusions: phase 1 results from a multicenter, open-label, phase 1/2 study. Lancet Oncology, 19(5):705– 714. Online: https://n9.cl/19bte.

Laetsch, T. W. and Hong, D. S. (2021). Tropomyosin receptor kinase inhibitors for the treatment of trk fusion cancer. Clinical Cancer Research, 27(8):4974– 4982. Online: https://n9.cl/s3fby.

Lange, A. M. and Lo, H. W. (2018). Inhibiting trk proteins in clinical cancer therapy. Cancers (Basel), 10(4):105. Online: https://n9.cl/nqv6a.

Loxo Oncology (2018). Vitrakvi (larotrectinib) capsules/oral solution [prescribing information]. Loxo Oncology, Stamford, CT.

Megan, P., Karen, K., Erika, W., Louis, J., Evelyn, S., and Brian, C. (2021). Transforming approaches to treating trk fusion cancer: historical comparison of larotrectinib and histology-specific therapies. Current Medical Research and Opinion, 37(1):59–70. Online: https://n9.cl/ht99gl.

Nakagawara, A. (2001). Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Letters, 169(2):107–114. Online: https://n9.cl/82jn0w.

Raedler, L. (2019). Vitrakvi (larotrectinib) first trk inhibitor approved by the fda for solid tumors based on a genetic mutation. Oncology Guideline FDA Application, 12:43–45. Online: https://n9.cl/z2g5f.

Tacconelli, A., Farina, A. R., Cappabianca, L., DeSantis, G., Tessitore, A., Vetuschi, A., Sferra, R., Rucci, N., Argenti, B., Screpanti, I., Gulino, A., and Mackay, A. R. (2004). Trka alternative splicing: A regulated tumor-promoting switch in human neuroblastoma. Cancer Cell, 6(4):347–360. Online: https://n9.cl/po2tk.

US Food and Drug Administration (2018). Fda approves an oncology drug that targets a key genetic driver of cancer, rather than a specific type of tumor. Online: https://n9.cl/5siyhh.

Vaishnavi, A., Capelletti, M., Le, A. T., Kako, S., Butaney, M., Ercan, D., Mahale, S., Davies, K. D., Aisner, D. L., Pilling, A. B., Berge, E. M., Kim, J., Sasaki, H., Park, S., Kryukov, G., Garraway, L. A., Hammerman, P. S., Haas, J., Andrews, S. W., Lipson, D., Stephens, P. J., Miller, V. A., VarellaGarcia, M., Jänne, P. A., and Doebele, R. C. (2013). Oncogenic and drug-sensitive ntrk1 rearrangements in lung cancer. Nature Medicine, 19:1469– 1472. Online: https://n9.cl/qgzy0l.

Vaishnavi, A., Le, A. T., and Doebele, R. C. (2015). Trking down an old oncogene in a new era of targeted therapy. Cancer Discovery, 5(1):25–34. Online: https://n9.cl/9y4rq.

Wyatt, S., Middleton, G., Doxakis, E., and Davies, A. M. (1999). Selective regulation of trkc expression by nt3 in the developing peripheral nervous system. Journal of Neuroscience, 19(15):6559–6570. Online: https://n9.cl/67xzy.

Yang, J. C. H., Brose, M. S., Castro, G., Kim, E. S., Lassen, U. N., Leyvraz, S., Pappo, A., López-Ríos, F., Reeves, J. A., Fellous, M., Penault-Llorca, F., Rudzinski, E. R., Tabatabai, G., Vassal, G., Drilon, A., and Trent, J. (2022). Rationale and design of on-trk: a novel prospective noninterventional study in patients with trk fusion cancer treated with larotrectinib. BMC Cancer, 22:625. Online: https://n9.cl/c3ldty.